Cite this article as: | Zhi-yu Chang, Ping Wang, Jian-liang Zhang, Ke-xin Jiao, Yue-qiang Zhang, and Zheng-jian Liu, Effect of CO2 and H2O on gasification dissolution and deep reaction of coke, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp.1402-1411. https://dx.doi.org/10.1007/s12613-018-1694-4 |
K.D. Xu, Low carbon economy and iron and steel industry, Iron. Steel, 45(2010), No. 3, p. 1.
|
P.R. Austin, H. Nogami, and J.I. Yagi, Prediction of blast furnace performance with top gas recycling, ISIJ Int., 38(1998), No. 3, p. 239.
|
T. Akiyama, H. Sato, A. Muramatsu, and J. I. Yagi, Feasibility study on blast furnace ironmaking system intergrated with methanol synthesis for reduction of carbon dioride emission and effective use of energy, ISIJ Int., 33(1993), No. 11, p. 1136.
|
K.S.A. Halim, Theoretical approach to change blast furnace regime with natural gas injection, J. Iron. Steel Res. Int., 20(2013), No. 9, p. 40.
|
V. Trinkel, N. Kieberger, T. Bürgler, H. Rechberger, and J. Fellner, Influence of waste plastic utilisation in blast furnace on heavy metal emissions, J. Cleaner Prod., 94(2015), p. 312.
|
W.H. Chen, C.L. Hsu, and S.W. Du, Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace, Energy, 86(2015), p. 758.
|
W.H. Chen, M.R. Lin, A.B. Yu, S.W. Du, and T.S. Leu, Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast furnace, Int. J. Hydrogen Energy, 37(2012), No. 16, p. 11748.
|
Q. Lyu, Y.N. Qie, X.J. Liu, C.C. Lan, J.P. Li, and S. Liu, Effect of hydrogen addition on reduction behavior of iron oxides in gas-injection blast furnace, Thermochim. Acta, 648(2017), p. 79.
|
J.X. Li, K.C. Lu, J.J. Wang, and P. Wang, Influence of H2O-CO2 gas mixture on coke degradation, J. Anhui Univ. Technol. (Nat. Sci.), 25(2008), No. 3, p. 233.
|
Y.Z. Fang, Z.F. Qian, J.H. Yang, and D.Z. Jiang, Deep reaction of coke, Fuels Chem., 29(1998), p. 301.
|
P. Wang, Y.Q. Zhang, J.X. Li, H.M. Long, Q.M. Meng, and S.C. Yu, Effects of CO2 and H2O on solution loss reaction of coke, Chin. J. Process Eng., 16(2016), No. 1, p. 138.
|
Y.Q. Zhang, Fundamental study on degradation behavior of coke with H2O and CO2[Dissertation], Anhui University of Technology, Maanshan, 2016, p. 48.
|
Q.Q. Zhao, Q.G. Xue, X.F. She, H. Wang, and J.S. Wang, Study on kinetics of solution loss reaction of coke with H2O and CO2, Chin. J. Process Eng., 12(2012), No. 5, p. 789.
|
W. Wang, B.W. Dai, R.S. Xu, J. Schenk, J. Wang, and Z.L. Xue, The Effect of H2O on the reactivity and microstructure of metallurgical coke, Steel Res. Int., 88(2017), No. 8, art. No. 1700063.
|
S.M. Shin and S.M. Jung, Gasification effect of metallurgical coke with CO2 and H2O on the porosity and macro strength in the temperature range of 1100 to 1500℃, Energy Fuels, 29(2015), No. 10, p. 6849.
|
M. Zamalloa, D. Ma, and T.A. Utigard, Oxidation rates of industrial cokes with CO2 and air, ISIJ Int., 35(1995), No. 5, p. 458.
|
Y. Iwanaga and K. Takatani, Degradation behavior of coke at high-temperatures zone in blast furnace, Trans. Iron. Steel Inst. Jpn., 28(1988), No. 12, p. 990.
|
Y.L. Liu, Q.Q. Xue, G. Wang, and G.S. Wang, Dynamic dissolution of CO2/H2O (g)-gasified coke by slag containing FeO, Ironmaking Steelmaking, 45(2018), No. 9, p. 821.
|
P. Wang, Y.Q. Zhang, H.M. Long, R.F. Wei, J.X. Li, Q.M. Meng, and S.C. Yu, Degradation behavior of coke reacting with H2O and CO2 at high temperature, ISIJ Int., 57(2017), No. 4, p. 643.
|
P. Wang, S.C. Yu, H.M. Long, R.F. Wei, Q.M. Meng, and Y.Q. Zhang, Microscopic study on the interior and exterior reactions of coke with CO2 and H2O, Ironmaking Steelmaking, 44(2016), No. 8, p. 595.
|
K.J. Li, J.L. Zhang, Z.J. Liu, X.J. Ning, and T.J. Yang, Gasification of graphite and coke in carbon-carbon dioxide-sodium or potassium carbonate systems, Ind. Eng. Chem. Res., 53(2014), No. 14, p. 5737.
|
M. Schmal, J. Monteiro, and J.L. Castellan, Kinetics of coal gasification, Ind. Eng. Chem. Process Des. Dev., 21(1982), No. 2, p. 256.
|
K. Miura, M. Aimi, T. Naito, and K. Hashimoto, Steam gasification of carbon:Effect of several metals on the rate of gasification and the rates of CO and CO2 formation, Fuel, 65(1986), No. 3, p. 407.
|
O. Levenspiel, Chemical reaction engineering, Ind. Eng. Chem. Res., 38(1999), No. 11, p. 4140.
|
R. Guo, Q. Wang, and S. Zhang, Influence of solution loss reaction on post-reaction strength of coke, Coal Convers., 35(2012), No. 2, p. 12.
|
J.X. Zhang, Metallurgical Physical Chemistry, Metallurgical Industry Press, Beijing, 2014, p. 200.
|
H.J. Guo, Metallurgical Physical Chemistry, Metallurgical Industry Press, Beijing, 2014, p. 116.
|
P. Cui, L. Zhang, M. Yang, and Y. Wang, Study on kinetics and model of coke loss reaction with CO2 in blast furnace, J. Fuel. Chem. Technol., 34(2006), No. 3, p. 280.
|
[1] | Min-min Sun, Jian-liang Zhang, Ke-jiang Li, Ke Guo, Zi-ming Wang, Chun-he Jiang. Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(10): 1247-1257. DOI: 10.1007/s12613-019-1846-1 |
[2] | Li Xiao, Pei-wei Han, Yong-liang Wang, Guo-yan Fu, Zhi Sun, Shu-feng Ye. Silver dissolution in a novel leaching system: Reaction kinetics study [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(2): 168-177. DOI: 10.1007/s12613-019-1721-0 |
[3] | Sheng-chao Duan, Chuang Li, Han-jie Guo, Jing Guo, Shao-wei Han, Wen-sheng Yang. Investigation of the kinetic mechanism of the demanganization reaction between carbon-saturated liquid iron and CaF2-CaO-SiO2-based slags [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(4): 399-404. DOI: 10.1007/s12613-018-1584-9 |
[4] | Ze-hong Wang, Guo-feng Li, Yong-sheng Sun, Ming-zhao He. Reduction behavior of hematite in the presence of coke [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(11): 1244-1251. DOI: 10.1007/s12613-016-1345-6 |
[5] | Jian-liang Zhang, Jian Guo, Guang-wei Wang, Tao Xu, Yi-fan Chai, Chang-le Zheng, Run-sheng Xu. Kinetics of petroleum coke/biomass blends during co-gasification [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(9): 1001-1010. DOI: 10.1007/s12613-016-1317-x |
[6] | Stanislav S. Gornostayev, Eetu-Pekka Heikkinen, Jyrki J. Heino, Timo M. J. Fabritius. Fe-Si particles on the surface of blast furnace coke [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(7): 697-703. DOI: 10.1007/s12613-015-1124-9 |
[7] | Qing-hai Pang, Jian-liang Zhang, Cheng-lin Qi, Chao Ma, De-wen Kong, Rui Mao. K2CO3 catalysis on the reactivity of top charged coke and stamp charged coke [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(1): 17-27. DOI: 10.1007/s12613-013-0688-5 |
[8] | Zhicheng Liu, Yanhui Feng, Xinxin Zhang, Lie Xu, Zhendong Yu. Numerical and experimental study on coke size distribution in bell-type charging in the CDQ shaft [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(3): 236-240. DOI: 10.1016/S1005-8850(08)60044-4 |
[9] | Jianhua Liu, Jiayun Zhang. Assessment of the apparent activation energies for gas/solid reactions-carbonate decomposition [J]. International Journal of Minerals, Metallurgy and Materials, 2003, 10(2): 25-29. |
[10] | Chunbao Xu, Shengli Wu, Daqiang Cang. Numerical Modeling of NO Formation during Packed-bed Combustion of Coke Granules [J]. International Journal of Minerals, Metallurgy and Materials, 2000, 7(4): 261-268. |
1. | Meng Li, Zhong Li, Chao Li, et al. Numerical insights on the combustion characteristics in the low-carbon blast furnace raceway with hydrogen-rich gas injections. International Journal of Hydrogen Energy, 2025, 100: 341. DOI:10.1016/j.ijhydene.2024.12.305 |
2. | Kaihui Ma, Qinghui Wu, YunPeng Fang, et al. Hydrogen Impact on the Shrinkage Behavior Between Quaternary/Quinary-FeO-Rich Oxides. Journal of Sustainable Metallurgy, 2025. DOI:10.1007/s40831-025-01061-y |
3. | Feng Zhou, Kejiang Li, Haotian Liao, et al. Effect of sodium vapor on the properties and microstructure of blast furnace coke in H2O atmosphere. Fuel, 2025, 384: 134058. DOI:10.1016/j.fuel.2024.134058 |
4. | Xinjian Li, Weijian Tian, Hui Li, et al. Effect of applying full oxygen blast furnace on the transformation of energy mix and reduction of CO2 emissions for an integral steel plant. Energy, 2025, 315: 134390. DOI:10.1016/j.energy.2025.134390 |
5. | Shuixin Ye, Fengmei Wang, Pan Yang, et al. Dissection of hydrogen-rich blast furnace: Continuous evolution in properties and microstructure of coke in lump zone. International Journal of Hydrogen Energy, 2025, 105: 565. DOI:10.1016/j.ijhydene.2024.12.436 |
6. | Ai Wang, Salman Khoshk Rish, David R. Jenkins, et al. Microstructural and microtextural evolution of metallurgical coke during reaction with CO2 and H2O. Fuel, 2025, 381: 133280. DOI:10.1016/j.fuel.2024.133280 |
7. | Mingxin Wu, Jiayang Li, Junchen Huang, et al. Variable Activation Energy Models for the Shrinkage and Softening Melting Behavior of Iron Ore in Blast Furnace Conditions. ACS Omega, 2024, 9(44): 44365. DOI:10.1021/acsomega.4c05326 |
8. | Milena Ribeiro Gomes, Tim Leber, Tobias Tillmann, et al. Towards H2 implementation in the iron- and steelmaking industry: State of the art, requirements, and challenges for refractory materials. Journal of the European Ceramic Society, 2024, 44(3): 1307. DOI:10.1016/j.jeurceramsoc.2023.10.044 |
9. | Feng Zhou, Daosheng Peng, Kejiang Li, et al. Coke behavior with H2O in a hydrogen-enriched blast furnace: A review. International Journal of Minerals, Metallurgy and Materials, 2024, 31(5): 959. DOI:10.1007/s12613-024-2854-3 |
10. | Zhaoning Yang, Xiaoxin Shu, Di Guo, et al. Progress in the research on organic piezoelectric catalysts for dye decomposition. International Journal of Minerals, Metallurgy and Materials, 2024, 31(2): 245. DOI:10.1007/s12613-023-2773-8 |
11. | Mingxin Wu, Hongman He, Junchen Huang, et al. Advancing carbon-neutral iron production: Non-equimolar diffusion kinetics of coke with H2O in hydrogen-rich blast furnaces. iScience, 2024, 27(11): 111181. DOI:10.1016/j.isci.2024.111181 |
12. | Lei Liang, Zhang Sun, Hang Zhang, et al. Theoretical insight into the competitive effect of CO2 and additive H2O in coke gasification. Chemical Engineering Journal, 2023, 461: 142003. DOI:10.1016/j.cej.2023.142003 |
13. | Zixin Xiong, Kejiang Li, Yushan Bu, et al. Effect of Different sp2 Bond Contents on the Reactivity and Mechanical Properties of Coke Carbon: A ReaxFF Molecular Dynamics Study. ACS Omega, 2023, 8(40): 37043. DOI:10.1021/acsomega.3c04411 |
14. | Yanbiao Chen, Yuanhao Yu, Yan Gao, et al. Effect of Mixed Charging of Nut Coke and Sinter on Hydrogen-Rich Smelting Process of Blast Furnace. Journal of Sustainable Metallurgy, 2023, 9(1): 280. DOI:10.1007/s40831-022-00645-2 |
15. | Dianyu E, Peng Zhou, Langyong Ji, et al. Particle-scale modelling of injected hydrogen and coke co-combustion in the raceway of an ironmaking blast furnace. Fuel, 2023, 336: 126778. DOI:10.1016/j.fuel.2022.126778 |
16. | Zhenjie Zheng, Yasuaki Ueki, Ryo Yoshiie, et al. Degradation Behaviors of Coke in CO<sub>2</sub> and H<sub>2</sub>O Gasification Reactions at Low Temperatures. ISIJ International, 2023, 63(11): 1810. DOI:10.2355/isijinternational.ISIJINT-2023-207 |
17. | Chinedu J. Okere, James J. Sheng. Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. International Journal of Hydrogen Energy, 2023, 48(97): 38188. DOI:10.1016/j.ijhydene.2023.06.135 |
18. | Chenchen Lan, Yuejun Hao, Jiannan Shao, et al. Effect of H2 on Blast Furnace Ironmaking: A Review. Metals, 2022, 12(11): 1864. DOI:10.3390/met12111864 |
19. | Xiaowei Fu, Zhijun He, Junhong Zhang. Catalytic Effect of Alkali Metals on the Gasification Dissolution Reaction and Deep Reaction Behavior of Metallurgical Cokes. ACS Omega, 2022, 7(43): 38979. DOI:10.1021/acsomega.2c04716 |
20. | Hong-tao Wang, Man-sheng Chu, Ji-wei Bao, et al. Non-isothermal reduction process analysis of iron-bearing burden with charging iron coke hot briquette under simulated blast furnace conditions. Journal of Iron and Steel Research International, 2022, 29(5): 741. DOI:10.1007/s42243-021-00640-z |
21. | Ziguang Zhao, Xiaobing Yu, Yansong Shen. Transient CFD study of wet burden charging on dynamic in-furnace phenomena in an ironmaking blast furnace: Impacts and remedies. Powder Technology, 2022, 408: 117708. DOI:10.1016/j.powtec.2022.117708 |
22. | Dianyu E, Peng Zhou, Langyong Ji, et al. Particle-Scale Modelling of Injected Hydrogen and Coke Co-Combustion in the Raceway of an Ironmaking Blast Furnace. SSRN Electronic Journal, 2022. DOI:10.2139/ssrn.4193731 |
23. | Ziyi Wang, Zhenbo Wang, Zhiqiang Gong, et al. Auxiliary effect of CO2 on pyrolysis of oily sludge. Journal of Environmental Science and Health, Part A, 2022, 57(6): 460. DOI:10.1080/10934529.2022.2077607 |
24. | Jinglan Hu, Yuelin Qin, Xin Li, et al. Coupled Typical Coke Gasification and Sintering Ore Reduction in CO–N2–H2. ACS Omega, 2022, 7(38): 34420. DOI:10.1021/acsomega.2c04064 |
25. | Xiangyu Fan, Chao Li, Mingdeng Wang, et al. Dissolution losses of metallurgical cokes in CO2-H2O mixtures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(4): 9172. DOI:10.1080/15567036.2022.2131017 |
26. | Kaihui Ma, Junyi Deng, Gang Wang, et al. Utilization and impacts of hydrogen in the ironmaking processes: A review from lab-scale basics to industrial practices. International Journal of Hydrogen Energy, 2021, 46(52): 26646. DOI:10.1016/j.ijhydene.2021.05.095 |
27. | Ding Zi-Zhao, Sun Zhang, Lu Qiang, et al. Boudouard reaction accompanied by graphitization of wrinkled carbon layers in coke gasification: A theoretical insight into the classical understanding. Fuel, 2021, 297: 120747. DOI:10.1016/j.fuel.2021.120747 |
28. | Chen-chen Lan, Shu-hui Zhang, Xiao-jie Liu, et al. Gasification Behaviors of Coke in a Blast Furnace with and without H<sub>2</sub>. ISIJ International, 2021, 61(1): 158. DOI:10.2355/isijinternational.ISIJINT-2020-372 |
29. | Yanbiao Chen, Haibin Zuo. Review of hydrogen-rich ironmaking technology in blast furnace. Ironmaking & Steelmaking, 2021, 48(6): 749. DOI:10.1080/03019233.2021.1909992 |
30. | Anne M. Heikkilä, Aki M. Koskela, Mikko O. Iljana, et al. Coke Gasification in Blast Furnace Shaft Conditions with H2 and H2O Containing Atmospheres. steel research international, 2021, 92(3) DOI:10.1002/srin.202000456 |
31. | Junchen Huang, Rui Guo, Lin Tao, et al. Effects of Stefan Flow on Metallurgical Coke Gasification with CO2. Energy & Fuels, 2020, 34(3): 2936. DOI:10.1021/acs.energyfuels.9b04134 |
32. | Hao-bin Zhu, Wen-long Zhan, Zhi-jun He, et al. Pore structure evolution during the coke graphitization process in a blast furnace. International Journal of Minerals, Metallurgy and Materials, 2020, 27(9): 1226. DOI:10.1007/s12613-019-1927-1 |
33. | Jie Huang, Yixuan Yang, Yinping Cao, et al. Effect of Iron Particles on the Coke Solution Loss Reaction. ACS Omega, 2020, 5(39): 25042. DOI:10.1021/acsomega.0c01701 |
34. | Junchen Huang, Rui Guo, Lin Tao, et al. Mass transfer coefficient and effective internal diffusion coefficient for coke solution loss reaction with non-equimolar diffusion. Fuel, 2020, 278: 118225. DOI:10.1016/j.fuel.2020.118225 |
35. | Min-min Sun, Jian-liang Zhang, Ke-jiang Li, et al. Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(10): 1247. DOI:10.1007/s12613-019-1846-1 |