Tevfik Küçükömeroğlu, Semih M. Aktarer, Güven İpekoğlu, and Gürel Çam, Microstructure and mechanical properties of friction-stir welded St52 steel joints, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1457-1464. https://doi.org/10.1007/s12613-018-1700-x
Cite this article as:
Tevfik Küçükömeroğlu, Semih M. Aktarer, Güven İpekoğlu, and Gürel Çam, Microstructure and mechanical properties of friction-stir welded St52 steel joints, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1457-1464. https://doi.org/10.1007/s12613-018-1700-x
Research Article

Microstructure and mechanical properties of friction-stir welded St52 steel joints

+ Author Affiliations
  • Corresponding author:

    Tevfik Küçükömeroğlu    E-mail: guven.ipekoglu@iste.edu.tr

  • Received: 22 March 2018Revised: 22 June 2018Accepted: 13 July 2018
  • The aim of this work is to investigate the mechanical properties and microstructures of friction-stir welded (FSWed) St52 structural steel joints. In this study, St52 steel plates with a thickness of 4 mm were butt-welded by friction-stir welding (FSW) using a tungsten carbide tool having a conical pin. The microstructure of the welded zone consists of equiaxed fine ferrite, grain boundary ferrite, Widmanstatten ferrite, and aggregates of ferrite + cementite. The microhardness measurements showed that the hardness of the welded zone was significantly higher than that of the base metal. The FSWed St52 joint exhibited a significant strength overmatching in the weld region and a strength performance similar to or slightly higher than that of the base plate.
  • loading
  • [1]
    W.M.N. Thomas, E.D. Nicholas, C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, Friction Stir Butt Welding, Int. Patent Appl. PCT/GB92/02203 and GB Patent Appl. 9125978.8, 1991, and US Patent Appl. 5460317, 1995.
    [2]
    R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, (50)2005, No. 1-2, p. 1.
    [3]
    G. Çam and G. İpekoğlu, Recent developments in joining of aluminium alloys, Int. J. Adv. Manuf. Technol., 91(2017), No. 5-8, p. 1851.
    [4]
    G. Çam, Friction stir welded structural materials:beyond Al-alloys, Int. Mater. Rev., 56(2011), No. 1, p. 1.
    [5]
    G. Çam, G. İpekoğlu, T. Küçükömeroğlu, and S.M. Aktarer, Applicability of friction stir welding to steels, J. Achv. Mater. Manuf. Eng., 80(2017), No. 2, p. 65.
    [6]
    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent advances in friction-stir welding-Process, weldment structure and properties, Prog. Mater. Sci., 53(2008), No. 6, p. 980.
    [7]
    J.A. Esparza, W.C. Davis, E.A. Trillo, and L.E. Murr, Friction-stir welding of magnesium alloy AZ31B, J. Mater. Sci. Lett., 21(2002), No. 12, p. 917.
    [8]
    S. Rajakumar, A. Razalrose, and V. Balasubramanian, Friction stir welding of AZ61A magnesium alloy, Int. J. Adv. Manuf. Technol., 68(2013), No. 1-4, p. 277.
    [9]
    Y. Templeman, G.B. Hamu, and L. Meshi, Friction stir welded AM50 and AZ31 Mg alloys:Microstructural evolution and improved corrosion resistance, Mater. Charact., 126(2017), p. 86.
    [10]
    W.M. Thomas, P.L. Threadgill, and E.D. Nicholas, Feasibility of friction stir welding steel, Sci. Technol. Weld. Joining, 4(1999), No. 6, p. 365.
    [11]
    M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, and B. Bagheri, Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints, J. Mech. Sci. Technol., 31(2017), No. 3, p. 1135.
    [12]
    F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A review of friction stir welding of steels:Tool, material flow, microstructure, and properties, J. Mater. Sci. Techol., (34)2018, No. 1, p. 39.
    [13]
    H.H. Liu and H. Fujii, Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding, Mater. Sci. Eng. A, 711(2018), p. 140.
    [14]
    S. Mironov, Y.S. Sato, and H. Kokawa, Friction-stir welding and processing of Ti-6Al-4V titanium alloy:A review, J. Mater. Sci. Techol., 34(2018), No. 1, p. 58.
    [15]
    P. Edwards and M. Ramulu, Fatigue performance of friction stir welded titanium structural joints, Int. J. Fatigue, 70(2015), p. 171.
    [16]
    H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, Friction stir welding of carbon steels, Mater. Sci. Eng. A, 429(2006), No. 1-2, p. 50.
    [17]
    T.J. Lienert, W.L. Stellwag, B.B. Grimmett, and R.W. Warke, Friction stir welding studies on mild steel-Process results, microstructures, and mechanical properties are reported, Weld. J., 82(2003), No. 1, p. 1-S.
    [18]
    L. Cui, H. Fujii, N. Tsuji, and K. Nogi, Friction stir welding of a high carbon steel, Scripta Mater., 56(2007), No. 7, p. 637.
    [19]
    M. Imam, R. Ueji, and H. Fujii, Microstructural control and mechanical properties in friction stir welding of medium carbon low alloy S45C steel, Mater. Sci. Eng. A, 636(2015), p. 24.
    [20]
    H. Fujii, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, and K. Nogi, Friction stir welding of ultrafine grained interstitial free steels, Mater. Trans., 47(2006), No. 1, p. 239.
    [21]
    L.F. Cui, H. Fujii, N. Tsuji, K. Nakata, K. Nogi, R. Ikeda, and M. Matsushita, Transformation in stir zone of friction stir welded carbon steels with different carbon contents, ISIJ Int.,47(2007), No. 2, p. 299.
    [22]
    A.J. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel, and S. Packer, A microstructural study of friction stir welded joints of carbon steels, Int. J. Offshore Polar Eng., 14(2004). No. 4, p. 284.
    [23]
    D.H. Choi, C.Y. Lee, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokowa, and S.B. Jung, Effect of fixed location variation in friction stir welding of steels with different carbon contents, Sci. Technol. Weld. Joining, 15(2010), No. 4, p. 299.
    [24]
    D.H. Choi, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokowa, and S.B. Jung, Microstructural characterizations following friction stir welding of dissimilar alloys of low-and high-carbon steels, Mater. Trans., 52(2011), No. 7, p. 1500.
    [25]
    P.L. Threadgill, Terminology in friction stir welding, Sci. Technol. Weld. Joining, 12(2007), No. 4, p. 357.
    [26]
    P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets, Mater. Sci. Eng. A, 518(2009), No. 1-2, p. 1.
    [27]
    G. Thewlis, Classification and quantification of microstructures in steels, Mater. Sci. Techol., 20(2004), No. 2, p. 143.
    [28]
    M. Jafarzadegan, A.H. Feng, A. Abdollah-zadeh, T. Saeid, J. Shen, and H. Assadi, Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and St37 steel, Mater. Charact., 74(2012), p. 28.
    [29]
    G. Çam, Ç. Yeni, S. Erim, V. Ventzke, and M. Koçak, Investigation into properties of laser welded similar and dissimilar steel joints, Sci. Technol. Weld. Joining, 3(1998), No. 4, p. 177.
    [30]
    G. Çam, G. İpekoğlu, and H.T. Serindağ, Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints, Sci. Technol. Weld. Joining, 19(2014), No. 8, p. 715.
    [31]
    G. İpekoğlu, S. Erim, and G. Çam, Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions, Metall. Mater. Trans. A, 45(2014), No. 2, p. 864.
    [32]
    G. İpekoğlu, S. Erim, B. G. Kıral, and G. Çam, Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates, Kovove Mater., 51(2013), No. 3, p. 155.
    [33]
    G. İpekoğlu, B.G. Kıral, S. Erim, and G. Çam, Investigation of the effect of temper condition on friction stir weldability of AA7075 Al-alloy plates, Mater. Tehnol., 46(2012), No. 6, p. 627.
    [34]
    G. Çam, S. Güçlüer, A. Çakan, and H.T. Serindağ, Mechanical properties of friction stir butt-welded Al-5086 H32 plate, Materialwiss. Werkstofftech., 40(2009), No. 8, p. 638.
    [35]
    G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, M. Penasa, and C. Rivezla, Characterization of laser and electron beam welded Al-alloys, Prakt. Metallogr., 37(2000), No. 2, p. 59.
    [36]
    G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, G. Jennequin, and P. Gonthier-Maurin, Characterisation of electron beam welded aluminium alloys, Sci. Technol. Weld. Joining, 4(1999), No. 5, p. 317.
    [37]
    T. Küçükömeroğlu, E. Şentürk, L. Kara, G. İpekoğlu, and G. Çam, Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy, J. Mater. Eng. Perform., 25(2016,) No. 1, p. 320.
    [38]
    G. Çam, S. Mistikoglu, and M. Pakdil, Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu-37%Zn brass plate, Weld. J., 88(2009), No. 11, p. 225S.
    [39]
    G. Çam, H.T. Serindag, A. Çakan, S. Mistikoglu, and H. Yavuz, The effect of weld parameters on friction stir welding of brass plates, Materialwiss. Werkstofftech., 39(2008), No. 6, p. 394.
    [40]
    X.C. He, F.S. Gu, and A. Ball, A review of numerical analysis of friction stir welding, Prog. Mater. Sci., 65(2014), p. 1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (454) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return