Meng Ren, Cheng-yun Zhang, Yue-lin Wang, and Jin-jun Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp.1482-1492. https://dx.doi.org/10.1007/s12613-018-1703-7
Cite this article as: Meng Ren, Cheng-yun Zhang, Yue-lin Wang, and Jin-jun Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp.1482-1492. https://dx.doi.org/10.1007/s12613-018-1703-7
Research Article

Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors

Author Affilications
Funds: 

This work was financially supported by the National Natural Science Foundation of China (No. 21506184).

  • N-doped carbons were fabricated from zeolite-templated carbon via modification with melamine and mild KOH activation. The N-doping treatment and KOH activation slightly lowered the surface areas of pristine zeolite-templated carbon; nonetheless, N-doped carbons with a lower surface area exhibited much higher capacitance and cycling stability as fabricated into symmetric supercapacitor. Significantly, N-doped carbon obtained at 700℃ showed a capacitance of 45.7 F/g at 0.1 A/g and 42.0 F/g at 10 A/g for the fabricated supercapacitor with 6 M KOH electrolyte, with 92% retention of initial capacitance as current density increased up to 100-fold. This performance was attributed to the dual contribution of electric double-layer capacitance and pseudo-capacitance. The assembled supercapacitor also exhibited excellent cycling stability, with 91% capacitance retention at 10 A/g after 10000 cycles.
  • D.S. Su and R. Schloögl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications, ChemSusChem, 3(2010), No. 2, p. 136.
    G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41(2012), No. 2, p. 797.
    A.P. Periasamy, R. Ravindranath, P. Roy, W.P. Wu, H.T. Chang, P.V. Veerakkumar, and S.B. Liu, Carbon-boron core-shell microspheres for the oxygen reduction reaction, J. Mater. Chem. A, 4(2016), No. 33, p. 12987.
    D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, and G.Q. Lu, Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance, Adv. Funct. Mater., 19(2009), No. 11, p. 1800.
    T. Cordero-Lanzac, J.M. Rosas, F.J. García-Mateos, J.J. Ternero-Hidalgo, J. Palomo, J. Rodríguez-Mirasol, and T. Cordero, Role of different nitrogen functionalities on the electrochemical performance of activated carbons, Carbon, 126(2018), p. 65.
    L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors, J. Mater. Chem. A, 4(2016), No. 39, p. 15006.
    L. Wan, E. Shamsaei, C.D. Easton, D.B. Yu, Y. Liang, X.F. Chen, Z. Abbasi, A. Akbari, X.W. Zhang, and H.T. Wang, ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor, Carbon, 121(2017), p. 330.
    Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A.V. Kvit, S. Kaskel, and G. Yushin, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon, ACS Nano, 4(2010), No. 3, p. 1337.
    M. Zhou, F. Pu, Z. Wang, and S.Y. Guan, Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors, Carbon, 68(2014), p. 185.
    B. Xu, S.S. Hou, F.L. Zhang, G.P. Cao, M. Chu, and Y.S. Yang, Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors, J. Electroanal. Chem., 712(2014), p. 146.
    Z.X. Ma, T. Kyotani, Z. Liu, O. Terasaki, and A. Tomita, Very high surface area microporous carbon with a three-dimensional nano-array structure synthesis and its molecular structure, Chem. Mater., 13(2001), No. 12, p. 4413.
    C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, and F. Béguin, The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template, Adv. Funct. Mater., 17(2007), No. 11, p. 1828.
    J. Zhou, W. Li, Z.S. Zhang, X.Z. Wu, W. Xing, and S.P. Zhuo, Effect of cation nature of zeolite on carbon replicas and their electrochemical capacitance, Electrochim. Acta, 89(2013), p. 763.
    W. Li, J. Zhou, W. Xing, S.P. Zhuo, and Y.M. Lv, Preparation of microporous carbon using a zeolite HY template and its capacitive performance, Acta Phys. Chim. Sin., 27(2011), No. 3, p. 620.
    S. Leyva-García, K. Nueangnoraj, D. Lozano-Castelló, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla-Amorós, Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy, Carbon, 89(2015), p. 63.
    M.J. Mostazo-López, R. Ruiz-Rosas, A. Castro-Muñiz, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla-Amorós, Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors, Carbon, 129(2018), p. 510.
    N.P. Stadie, S.T. Wang, K.V. Kravchyk, and M.V. Kovalenko, Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries, ACS Nano, 11(2017), No. 2, p. 1911.
    K. Nueangnoraj, H. Nishihara, T. Ishii, N. Yamamoto, H. Itoi, R. Berenguer, R. Ruiz-Rosas, D. Cazorla-Amorós, E. Morallón, M. Ito, and T. Kyotani, Pseudocapacitance of zeolite-templated carbon in organic electrolytes, Energy Storage Mater., 1(2015), p. 35.
    H. Nishihara, H. Itoi, T. Kogure, P.X. Hou, H. Touhara, F. Okino, and T. Kyotani, Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials, Chem. Eur. J., 15(2009), No. 21, p. 5355.
    H. Xu, Q.M. Gao, H.L. Guo, and H.L. Wang, Hierarchical porous carbon obtained using the template of NaOH-treated zeolite β and its high performance as supercapacitor, Microporous Mesoporous Mater., 133(2010), No. 1-3, p. 106.
    X. Huang, Q. Wang, X.Y. Chen, and Z.J. Zhang, N-doped nanoporous carbons for the supercapacitor application by the template carbonization of glucose:the systematic comparison of different nitridation agents, J. Electroanal. Chem., 748(2015), p. 23.
    W.W. Gao, H. Huang, H.Y. Shi, X. Feng, and W.B. Song, Nitrogen-rich graphene from small molecules as high performance anode material, Nanotechnology, 25(2014), No. 41, art. No. 415402.
    J.J. Cai, L.J. Li, X.X. Lv, C.P. Yang, and X.B. Zhao, Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application, ACS Appl. Mater. Interfaces, 6(2014), No. 1, p. 167.
    Z.X. Ma, T. Kyotani, and A. Tomita, Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y, Carbon, 40(2002), No. 13, p. 2367.
    M. Wahid, G. Parte, D. Phase, and S. Ogale, Yogurt:a novel precursor for heavily nitrogen doped supercapacitor carbon, J. Mater. Chem. A, 3(2015), No. 3, p. 1208.
    T.T. Liu, E.H. Liu, R. Ding, Z.Y. Luo, T.T. Hu, and Z.P. Li, Preparation and supercapacitive performance of clew-like porous nanocarbons derived from sucrose by catalytic graphitization, Electrochim. Acta, 173(2015), p. 50.
    S. Zhang, K. Tian, B.H. Cheng, and H. Jiang, Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes, ACS Sustainable Chem. Eng., 5(2017), No. 8, p. 6682.
    H.M. Wei, H.J. Chen, N. Fu, J. Chen, G.X. Lan, W. Qian, Y.P. Liu, H.L. Lin, and S. Han, Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells, Electrochim. Acta, 231(2017), p. 403.
    K. Nueangnoraj, H. Nishihara, K. Imai, H. Itoi, T. Ishii, M. Kiguchi, Y. Sato, M. Terauchi, and T. Kyotani, Formation of crosslinked-fullerene-like framework as negative replica of zeolite Y, Carbon, 62(2013), p. 455.
    B.J. Zhu, B. Liu, C. Qu, H. Zhang, W.H. Guo, Z.B. Liang, F. Chen, and R.Q. Zou, Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres, J. Mater. Chem. A, 6(2018), No. 4, No. p. 1523.
    J.S. Moon, H. Kim, D.C. Lee, J.T. Lee, and G. Yushin, Increasing capacitance of zeolite-templated carbons in electric double layer capacitors, J. Electrochem. Soc., 162(2015), No. 5, p. A5070.
    W.T. Huang, H. Zhang, Y.Q. Huang, W.K. Wang, and S.C. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors, Carbon, 49(2011), No. 3, p. 838.
    Z.W. Tian, M. Xiang, J.C. Zhou, L.Q. Hu, and J.J. Cai, Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass:direct carbonization and excellent electrochemical properties, Electrochim. Acta, 211(2016), p. 225.
    F.B. Su, C.K. Poh, J.S. Chen, G.W. Xu, D. Wang, Q. Li, J.Y. Lin, and X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties, Energy Environ. Sci., 4(2011), No. 3, p. 717.
    L. Sun, C.L. Wang, Y. Zhou, Q. Zhao, X. Zhang, and J.S. Qiu, Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors, J. Solid State Electrochem., 18(2014), No. 1, p. 49.
    W.J. Si, J. Zhou, S.M. Zhang, S.J. Li, W. Xing, and S.P. Zhuo, Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications, Electrochim. Acta, 107(2013), p. 397.
    X.X. Wu, Z.W. Tian, L.Q. Hu, S. Huang, and J.J. Cai, Macroalgae-derived nitrogen-doped hierarchical porous carbons with high performance for H2 storage and supercapacitors, RSC Adv., 7(2017), No. 52, p. 32795.
    M. Ren, Z.Y. Jia, Z.W. Tian, D. López, J.J. Cai, M.M. Titirici, and A.B. Jorge, High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications, ChemElectroChem, 5(2018), No. 18, p. 2686.
  • Related Articles

    [1]Labani Mustafi, M. M. Rahman, Mohammad Nur E Alam Al Nasim, Mohammad Asaduzzaman Chowdhury, M. H. Monir. Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(11): 1335-1343. DOI: 10.1007/s12613-018-1687-3
    [2]Manjula Sharma, Vimal Sharma. Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(2): 222-233. DOI: 10.1007/s12613-016-1230-3
    [3]Kolsoom Ahmadisoltansaraei, Javad Moghaddam. Preparation of NiO nanoparticles from Ni(OH)2·NiCO3·4H2O precursor by mechanical activation [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(7): 726-735. DOI: 10.1007/s12613-014-0964-z
    [4]Yun Xue, Ye Chen, Mi-lin Zhang, Yong-de Yan. Preparation and characterization of LiAlxMn2-xO4 for a supercapacitor in aqueous electrolyte [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1): 112-118. DOI: 10.1016/S1674-4799(09)60019-4
    [5]Feng Chen, Yanruo Hong, Jialin Sun, Jinglong Bu. Preparation and characterization of calcium aluminate by chemical synthesis [J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(1): 82-86. DOI: 10.1016/S1005-8850(06)60019-4
    [6]Yunbing Hou, Bingwen Wang, Yu Chen, Botao Zhang, Lin Yu. Resistance to chemical attack of bittern-resisting cement in high-bittern environment [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(5): 469-475.
    [7]Xiaofeng Wang, Dianbo Ruan, Zheng You, Yiqiang Lu, Qiqian Sha. Performance of a 60 F carbon nanotubes-based supercapacitor for hybrid power sources [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(3): 267-273.
    [8]Xiaofeng Wang, Yanqiu Cao, Yiqiang Lu, Qiqian Sha, Ji Liang. Performance of a combined capacitor based on ultrafine nickel oxide/carbon nanotubes composite electrodes [J]. International Journal of Minerals, Metallurgy and Materials, 2004, 11(6): 533-538.
    [9]Xiaofeng Wang, Dazhi Wang, Cuiwei Do, Xianghua Kong, Qingguo Liu. Electrochemical performance of nickel oxide/KOH/active carbon super-capacitor [J]. International Journal of Minerals, Metallurgy and Materials, 2002, 9(4): 277-281.
    [10]Yongping Zhang, Yousong Gu, Xiangrong Chang, Zhongzhuo Tian, Xiufang Zhang. Structure and Composition of Crystalline Carbon Nitride Films Synthesized by Microwave Plasma Chemical Vapor Deposition [J]. International Journal of Minerals, Metallurgy and Materials, 2000, 7(4): 282-285.
  • Cited by

    Periodical cited type(20)

    1. Sergio Orozco-Barrera, Keigo Wakabayashi, Takeharu Yoshii, et al. Polyelectrolyte-coated zeolite-templated carbon electrodes for capacitive deionization and energy generation by salinity exchange. Separation and Purification Technology, 2025, 354: 129314. DOI:10.1016/j.seppur.2024.129314
    2. Min Liu, Huachen Lin, Lin Sun, et al. Enhanced charge storage in supercapacitors using carbon nanotubes and N-doped graphene quantum dots-modified (NiMn)Co2O4. Journal of Colloid and Interface Science, 2025, 678: 763. DOI:10.1016/j.jcis.2024.09.039
    3. Dongyang Wu, Fei Sun, Hua Wang, et al. Mechanochemical process enhancing pore reconstruction for dense energy storage of carbon-based supercapacitors. Energy Materials, 2025, 5(6) DOI:10.20517/energymater.2024.164
    4. Eugene Sefa Appiah, Perseverance Dzikunu, Samuel Olukayode Akinwamide, et al. A review on progress and prospects of diatomaceous earth as a bio-template material for electrochemical energy storage: synthesis, characterization, and applications. Ionics, 2024, 30(12): 7809. DOI:10.1007/s11581-024-05825-6
    5. Daliborka Popadić, Jugoslav Krstić, Aleksandra Janošević Ležaić, et al. Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 308: 123772. DOI:10.1016/j.saa.2023.123772
    6. Sirine Zallouz, Thibaud Aumond, Alain Moissette, et al. Zeolite-Templated Carbons as Supercapacitors: The Fundamental Role of Structural and Textural Properties. ACS Applied Energy Materials, 2024, 7(20): 9142. DOI:10.1021/acsaem.4c01203
    7. Zehang Zhao, Yifan Zhang, Rashid M. Othman, et al. Zeolite-templated carbons process with recycled materials and characterisation for energy storage applications. Process Safety and Environmental Protection, 2024, 186: 49. DOI:10.1016/j.psep.2024.03.105
    8. Eugene Sefa Appiah, Kwadwo Mensah-Darkwa, Anthony Andrews, et al. Tailoring a hierarchical porous carbon electrode from carbon black via 3D diatomite morphology control for enhanced electrochemical performance. Nanoscale Advances, 2024, 6(24): 6265. DOI:10.1039/D4NA00680A
    9. Jiaju Tao, Song Qian, Junfei Yang. Impact of Battery Capacity and Charging-Discharging Cycles on the Performance of Communication Devices. Journal of Physics: Conference Series, 2024, 2800(1): 012011. DOI:10.1088/1742-6596/2800/1/012011
    10. Yang Liu, Weiwei Kang, Guangxu Huang, et al. NaCl-assisted synthesis of porous carbons with ultra-high electrical conductivity for high-performance supercapacitors. Journal of Power Sources, 2023, 553: 232301. DOI:10.1016/j.jpowsour.2022.232301
    11. Hui Wang, Yiwei Liu, Lirong Kong, et al. Porous graphitic carbon nitride nanosheets with three-dimensional interconnected network as electrode for supercapacitors. Journal of Energy Storage, 2023, 63: 106935. DOI:10.1016/j.est.2023.106935
    12. Yangfan Zheng, Jiayan Cui, Pengxiao Gao, et al. Newly Generated Ca-Feldspar during Sintering Processes Enhances the Mechanical Strength of Coal Gangue-Based Insulation Bricks. Materials, 2023, 16(22): 7193. DOI:10.3390/ma16227193
    13. Jingyuan Zhao, Meng Wang, Chaojie Jiang, et al. High-performance supercapacitors enabled by N/S dual-doped porous carbon and DMO-regulated electrolyte. Diamond and Related Materials, 2023, 140: 110480. DOI:10.1016/j.diamond.2023.110480
    14. Meng Wang, Jingyuan Zhao, Da Zhang, et al. Honeycomb-like N-doped porous carbon derived from poly(Schiff-base) as an electrode material for high-performance supercapacitor. Journal of Electroanalytical Chemistry, 2022, 908: 116109. DOI:10.1016/j.jelechem.2022.116109
    15. Xiaoyu Zhang, Chunquan Li, Shuilin Zheng, et al. A review of the synthesis and application of zeolites from coal-based solid wastes. International Journal of Minerals, Metallurgy and Materials, 2022, 29(1): 1. DOI:10.1007/s12613-021-2256-8
    16. Yue Zhao, Bei Wang, Minjie Shi, et al. Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29(11): 1954. DOI:10.1007/s12613-021-2346-7
    17. Shilian Lai, Jingyan Zhu, Weibing Zhang, et al. Ultralong-Life Supercapacitors Using Pyridine-Derived Porous Carbon Materials. Energy & Fuels, 2021, 35(4): 3407. DOI:10.1021/acs.energyfuels.0c03286
    18. Ying Liu, Jiaxin Wang, Mohamed A. Serageldin, et al. Carbon deposition mechanism and structural changes for zeolite-templated carbons. Microporous and Mesoporous Materials, 2021, 324: 111311. DOI:10.1016/j.micromeso.2021.111311
    19. Tao Yang, Hui-juan Liu, Fan Bai, et al. Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance. International Journal of Minerals, Metallurgy and Materials, 2020, 27(2): 220. DOI:10.1007/s12613-019-1910-x
    20. Gege Huang, Meng Ren, Yuelin Wang, et al. Direct carbonization of ZIF-8 to N-doped carbons: Amino acid modulation and enhanced catalytic activity for oxygen reduction reaction. Materials Chemistry and Physics, 2019, 237: 121856. DOI:10.1016/j.matchemphys.2019.121856

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (658) PDF downloads (32) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return