Cite this article as: | Meng Ren, Cheng-yun Zhang, Yue-lin Wang, and Jin-jun Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp.1482-1492. https://dx.doi.org/10.1007/s12613-018-1703-7 |
D.S. Su and R. Schloögl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications, ChemSusChem, 3(2010), No. 2, p. 136.
|
G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41(2012), No. 2, p. 797.
|
A.P. Periasamy, R. Ravindranath, P. Roy, W.P. Wu, H.T. Chang, P.V. Veerakkumar, and S.B. Liu, Carbon-boron core-shell microspheres for the oxygen reduction reaction, J. Mater. Chem. A, 4(2016), No. 33, p. 12987.
|
D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, and G.Q. Lu, Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance, Adv. Funct. Mater., 19(2009), No. 11, p. 1800.
|
T. Cordero-Lanzac, J.M. Rosas, F.J. García-Mateos, J.J. Ternero-Hidalgo, J. Palomo, J. Rodríguez-Mirasol, and T. Cordero, Role of different nitrogen functionalities on the electrochemical performance of activated carbons, Carbon, 126(2018), p. 65.
|
L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors, J. Mater. Chem. A, 4(2016), No. 39, p. 15006.
|
L. Wan, E. Shamsaei, C.D. Easton, D.B. Yu, Y. Liang, X.F. Chen, Z. Abbasi, A. Akbari, X.W. Zhang, and H.T. Wang, ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor, Carbon, 121(2017), p. 330.
|
Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A.V. Kvit, S. Kaskel, and G. Yushin, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon, ACS Nano, 4(2010), No. 3, p. 1337.
|
M. Zhou, F. Pu, Z. Wang, and S.Y. Guan, Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors, Carbon, 68(2014), p. 185.
|
B. Xu, S.S. Hou, F.L. Zhang, G.P. Cao, M. Chu, and Y.S. Yang, Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors, J. Electroanal. Chem., 712(2014), p. 146.
|
Z.X. Ma, T. Kyotani, Z. Liu, O. Terasaki, and A. Tomita, Very high surface area microporous carbon with a three-dimensional nano-array structure synthesis and its molecular structure, Chem. Mater., 13(2001), No. 12, p. 4413.
|
C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, and F. Béguin, The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template, Adv. Funct. Mater., 17(2007), No. 11, p. 1828.
|
J. Zhou, W. Li, Z.S. Zhang, X.Z. Wu, W. Xing, and S.P. Zhuo, Effect of cation nature of zeolite on carbon replicas and their electrochemical capacitance, Electrochim. Acta, 89(2013), p. 763.
|
W. Li, J. Zhou, W. Xing, S.P. Zhuo, and Y.M. Lv, Preparation of microporous carbon using a zeolite HY template and its capacitive performance, Acta Phys. Chim. Sin., 27(2011), No. 3, p. 620.
|
S. Leyva-García, K. Nueangnoraj, D. Lozano-Castelló, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla-Amorós, Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy, Carbon, 89(2015), p. 63.
|
M.J. Mostazo-López, R. Ruiz-Rosas, A. Castro-Muñiz, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla-Amorós, Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors, Carbon, 129(2018), p. 510.
|
N.P. Stadie, S.T. Wang, K.V. Kravchyk, and M.V. Kovalenko, Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries, ACS Nano, 11(2017), No. 2, p. 1911.
|
K. Nueangnoraj, H. Nishihara, T. Ishii, N. Yamamoto, H. Itoi, R. Berenguer, R. Ruiz-Rosas, D. Cazorla-Amorós, E. Morallón, M. Ito, and T. Kyotani, Pseudocapacitance of zeolite-templated carbon in organic electrolytes, Energy Storage Mater., 1(2015), p. 35.
|
H. Nishihara, H. Itoi, T. Kogure, P.X. Hou, H. Touhara, F. Okino, and T. Kyotani, Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials, Chem. Eur. J., 15(2009), No. 21, p. 5355.
|
H. Xu, Q.M. Gao, H.L. Guo, and H.L. Wang, Hierarchical porous carbon obtained using the template of NaOH-treated zeolite β and its high performance as supercapacitor, Microporous Mesoporous Mater., 133(2010), No. 1-3, p. 106.
|
X. Huang, Q. Wang, X.Y. Chen, and Z.J. Zhang, N-doped nanoporous carbons for the supercapacitor application by the template carbonization of glucose:the systematic comparison of different nitridation agents, J. Electroanal. Chem., 748(2015), p. 23.
|
W.W. Gao, H. Huang, H.Y. Shi, X. Feng, and W.B. Song, Nitrogen-rich graphene from small molecules as high performance anode material, Nanotechnology, 25(2014), No. 41, art. No. 415402.
|
J.J. Cai, L.J. Li, X.X. Lv, C.P. Yang, and X.B. Zhao, Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application, ACS Appl. Mater. Interfaces, 6(2014), No. 1, p. 167.
|
Z.X. Ma, T. Kyotani, and A. Tomita, Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y, Carbon, 40(2002), No. 13, p. 2367.
|
M. Wahid, G. Parte, D. Phase, and S. Ogale, Yogurt:a novel precursor for heavily nitrogen doped supercapacitor carbon, J. Mater. Chem. A, 3(2015), No. 3, p. 1208.
|
T.T. Liu, E.H. Liu, R. Ding, Z.Y. Luo, T.T. Hu, and Z.P. Li, Preparation and supercapacitive performance of clew-like porous nanocarbons derived from sucrose by catalytic graphitization, Electrochim. Acta, 173(2015), p. 50.
|
S. Zhang, K. Tian, B.H. Cheng, and H. Jiang, Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes, ACS Sustainable Chem. Eng., 5(2017), No. 8, p. 6682.
|
H.M. Wei, H.J. Chen, N. Fu, J. Chen, G.X. Lan, W. Qian, Y.P. Liu, H.L. Lin, and S. Han, Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells, Electrochim. Acta, 231(2017), p. 403.
|
K. Nueangnoraj, H. Nishihara, K. Imai, H. Itoi, T. Ishii, M. Kiguchi, Y. Sato, M. Terauchi, and T. Kyotani, Formation of crosslinked-fullerene-like framework as negative replica of zeolite Y, Carbon, 62(2013), p. 455.
|
B.J. Zhu, B. Liu, C. Qu, H. Zhang, W.H. Guo, Z.B. Liang, F. Chen, and R.Q. Zou, Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres, J. Mater. Chem. A, 6(2018), No. 4, No. p. 1523.
|
J.S. Moon, H. Kim, D.C. Lee, J.T. Lee, and G. Yushin, Increasing capacitance of zeolite-templated carbons in electric double layer capacitors, J. Electrochem. Soc., 162(2015), No. 5, p. A5070.
|
W.T. Huang, H. Zhang, Y.Q. Huang, W.K. Wang, and S.C. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors, Carbon, 49(2011), No. 3, p. 838.
|
Z.W. Tian, M. Xiang, J.C. Zhou, L.Q. Hu, and J.J. Cai, Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass:direct carbonization and excellent electrochemical properties, Electrochim. Acta, 211(2016), p. 225.
|
F.B. Su, C.K. Poh, J.S. Chen, G.W. Xu, D. Wang, Q. Li, J.Y. Lin, and X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties, Energy Environ. Sci., 4(2011), No. 3, p. 717.
|
L. Sun, C.L. Wang, Y. Zhou, Q. Zhao, X. Zhang, and J.S. Qiu, Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors, J. Solid State Electrochem., 18(2014), No. 1, p. 49.
|
W.J. Si, J. Zhou, S.M. Zhang, S.J. Li, W. Xing, and S.P. Zhuo, Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications, Electrochim. Acta, 107(2013), p. 397.
|
X.X. Wu, Z.W. Tian, L.Q. Hu, S. Huang, and J.J. Cai, Macroalgae-derived nitrogen-doped hierarchical porous carbons with high performance for H2 storage and supercapacitors, RSC Adv., 7(2017), No. 52, p. 32795.
|
M. Ren, Z.Y. Jia, Z.W. Tian, D. López, J.J. Cai, M.M. Titirici, and A.B. Jorge, High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications, ChemElectroChem, 5(2018), No. 18, p. 2686.
|
[1] | Labani Mustafi, M. M. Rahman, Mohammad Nur E Alam Al Nasim, Mohammad Asaduzzaman Chowdhury, M. H. Monir. Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(11): 1335-1343. DOI: 10.1007/s12613-018-1687-3 |
[2] | Manjula Sharma, Vimal Sharma. Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(2): 222-233. DOI: 10.1007/s12613-016-1230-3 |
[3] | Kolsoom Ahmadisoltansaraei, Javad Moghaddam. Preparation of NiO nanoparticles from Ni(OH)2·NiCO3·4H2O precursor by mechanical activation [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(7): 726-735. DOI: 10.1007/s12613-014-0964-z |
[4] | Yun Xue, Ye Chen, Mi-lin Zhang, Yong-de Yan. Preparation and characterization of LiAlxMn2-xO4 for a supercapacitor in aqueous electrolyte [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1): 112-118. DOI: 10.1016/S1674-4799(09)60019-4 |
[5] | Feng Chen, Yanruo Hong, Jialin Sun, Jinglong Bu. Preparation and characterization of calcium aluminate by chemical synthesis [J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(1): 82-86. DOI: 10.1016/S1005-8850(06)60019-4 |
[6] | Yunbing Hou, Bingwen Wang, Yu Chen, Botao Zhang, Lin Yu. Resistance to chemical attack of bittern-resisting cement in high-bittern environment [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(5): 469-475. |
[7] | Xiaofeng Wang, Dianbo Ruan, Zheng You, Yiqiang Lu, Qiqian Sha. Performance of a 60 F carbon nanotubes-based supercapacitor for hybrid power sources [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(3): 267-273. |
[8] | Xiaofeng Wang, Yanqiu Cao, Yiqiang Lu, Qiqian Sha, Ji Liang. Performance of a combined capacitor based on ultrafine nickel oxide/carbon nanotubes composite electrodes [J]. International Journal of Minerals, Metallurgy and Materials, 2004, 11(6): 533-538. |
[9] | Xiaofeng Wang, Dazhi Wang, Cuiwei Do, Xianghua Kong, Qingguo Liu. Electrochemical performance of nickel oxide/KOH/active carbon super-capacitor [J]. International Journal of Minerals, Metallurgy and Materials, 2002, 9(4): 277-281. |
[10] | Yongping Zhang, Yousong Gu, Xiangrong Chang, Zhongzhuo Tian, Xiufang Zhang. Structure and Composition of Crystalline Carbon Nitride Films Synthesized by Microwave Plasma Chemical Vapor Deposition [J]. International Journal of Minerals, Metallurgy and Materials, 2000, 7(4): 282-285. |
1. | Sergio Orozco-Barrera, Keigo Wakabayashi, Takeharu Yoshii, et al. Polyelectrolyte-coated zeolite-templated carbon electrodes for capacitive deionization and energy generation by salinity exchange. Separation and Purification Technology, 2025, 354: 129314. DOI:10.1016/j.seppur.2024.129314 |
2. | Min Liu, Huachen Lin, Lin Sun, et al. Enhanced charge storage in supercapacitors using carbon nanotubes and N-doped graphene quantum dots-modified (NiMn)Co2O4. Journal of Colloid and Interface Science, 2025, 678: 763. DOI:10.1016/j.jcis.2024.09.039 |
3. | Dongyang Wu, Fei Sun, Hua Wang, et al. Mechanochemical process enhancing pore reconstruction for dense energy storage of carbon-based supercapacitors. Energy Materials, 2025, 5(6) DOI:10.20517/energymater.2024.164 |
4. | Eugene Sefa Appiah, Perseverance Dzikunu, Samuel Olukayode Akinwamide, et al. A review on progress and prospects of diatomaceous earth as a bio-template material for electrochemical energy storage: synthesis, characterization, and applications. Ionics, 2024, 30(12): 7809. DOI:10.1007/s11581-024-05825-6 |
5. | Daliborka Popadić, Jugoslav Krstić, Aleksandra Janošević Ležaić, et al. Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 308: 123772. DOI:10.1016/j.saa.2023.123772 |
6. | Sirine Zallouz, Thibaud Aumond, Alain Moissette, et al. Zeolite-Templated Carbons as Supercapacitors: The Fundamental Role of Structural and Textural Properties. ACS Applied Energy Materials, 2024, 7(20): 9142. DOI:10.1021/acsaem.4c01203 |
7. | Zehang Zhao, Yifan Zhang, Rashid M. Othman, et al. Zeolite-templated carbons process with recycled materials and characterisation for energy storage applications. Process Safety and Environmental Protection, 2024, 186: 49. DOI:10.1016/j.psep.2024.03.105 |
8. | Eugene Sefa Appiah, Kwadwo Mensah-Darkwa, Anthony Andrews, et al. Tailoring a hierarchical porous carbon electrode from carbon black via 3D diatomite morphology control for enhanced electrochemical performance. Nanoscale Advances, 2024, 6(24): 6265. DOI:10.1039/D4NA00680A |
9. | Jiaju Tao, Song Qian, Junfei Yang. Impact of Battery Capacity and Charging-Discharging Cycles on the Performance of Communication Devices. Journal of Physics: Conference Series, 2024, 2800(1): 012011. DOI:10.1088/1742-6596/2800/1/012011 |
10. | Yang Liu, Weiwei Kang, Guangxu Huang, et al. NaCl-assisted synthesis of porous carbons with ultra-high electrical conductivity for high-performance supercapacitors. Journal of Power Sources, 2023, 553: 232301. DOI:10.1016/j.jpowsour.2022.232301 |
11. | Hui Wang, Yiwei Liu, Lirong Kong, et al. Porous graphitic carbon nitride nanosheets with three-dimensional interconnected network as electrode for supercapacitors. Journal of Energy Storage, 2023, 63: 106935. DOI:10.1016/j.est.2023.106935 |
12. | Yangfan Zheng, Jiayan Cui, Pengxiao Gao, et al. Newly Generated Ca-Feldspar during Sintering Processes Enhances the Mechanical Strength of Coal Gangue-Based Insulation Bricks. Materials, 2023, 16(22): 7193. DOI:10.3390/ma16227193 |
13. | Jingyuan Zhao, Meng Wang, Chaojie Jiang, et al. High-performance supercapacitors enabled by N/S dual-doped porous carbon and DMO-regulated electrolyte. Diamond and Related Materials, 2023, 140: 110480. DOI:10.1016/j.diamond.2023.110480 |
14. | Meng Wang, Jingyuan Zhao, Da Zhang, et al. Honeycomb-like N-doped porous carbon derived from poly(Schiff-base) as an electrode material for high-performance supercapacitor. Journal of Electroanalytical Chemistry, 2022, 908: 116109. DOI:10.1016/j.jelechem.2022.116109 |
15. | Xiaoyu Zhang, Chunquan Li, Shuilin Zheng, et al. A review of the synthesis and application of zeolites from coal-based solid wastes. International Journal of Minerals, Metallurgy and Materials, 2022, 29(1): 1. DOI:10.1007/s12613-021-2256-8 |
16. | Yue Zhao, Bei Wang, Minjie Shi, et al. Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29(11): 1954. DOI:10.1007/s12613-021-2346-7 |
17. | Shilian Lai, Jingyan Zhu, Weibing Zhang, et al. Ultralong-Life Supercapacitors Using Pyridine-Derived Porous Carbon Materials. Energy & Fuels, 2021, 35(4): 3407. DOI:10.1021/acs.energyfuels.0c03286 |
18. | Ying Liu, Jiaxin Wang, Mohamed A. Serageldin, et al. Carbon deposition mechanism and structural changes for zeolite-templated carbons. Microporous and Mesoporous Materials, 2021, 324: 111311. DOI:10.1016/j.micromeso.2021.111311 |
19. | Tao Yang, Hui-juan Liu, Fan Bai, et al. Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance. International Journal of Minerals, Metallurgy and Materials, 2020, 27(2): 220. DOI:10.1007/s12613-019-1910-x |
20. | Gege Huang, Meng Ren, Yuelin Wang, et al. Direct carbonization of ZIF-8 to N-doped carbons: Amino acid modulation and enhanced catalytic activity for oxygen reduction reaction. Materials Chemistry and Physics, 2019, 237: 121856. DOI:10.1016/j.matchemphys.2019.121856 |