Ji-wei Lu, Zhi-tao Yuan, Xiao-fei Guo, Zhong-yun Tong, and Li-xia Li, Magnetic separation of pentlandite from serpentine by selective magnetic coating, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp.1-10. https://dx.doi.org/10.1007/s12613-019-1704-1
Cite this article as: Ji-wei Lu, Zhi-tao Yuan, Xiao-fei Guo, Zhong-yun Tong, and Li-xia Li, Magnetic separation of pentlandite from serpentine by selective magnetic coating, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp.1-10. https://dx.doi.org/10.1007/s12613-019-1704-1

Magnetic separation of pentlandite from serpentine by selective magnetic coating

  • In this study, pentlandite was selectively separated from serpentine using magnetic coating technology by adjusting and optimizing pH, stirring speeds, magnetic field intensities, and dosages of sodium hexametaphosphate (SHMP) and sodium oleate (SO). A magnetic concentrate with Ni grade of 20.8% and Ni recovery of 80.5% was attained under the optimized operating conditions. Considering the above, the adsorption behaviors of SHMP and SO and the surface properties of minerals after the magnetic coating were studied by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results show that magnetite was preferentially coated on the pentlandite surfaces and sparingly coated on the serpentine surfaces in the presence of SHMP and SO. Furthermore, calculations by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory indicate that the preferential adsorption of magnetite on the pentlandite surfaces is due to the presence of a hydrophobic interaction between the magnetite and pentlandite, which is much stronger than the interaction between magnetite and serpentine.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return