Renuprava Dalai, Siddhartha Das,  and Karabi Das, Relationship between the microstructure and properties of thermomechanically processed Fe-17Mn and Fe-17Mn-3Al steels, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp. 64-75. https://doi.org/10.1007/s12613-019-1710-3
Cite this article as:
Renuprava Dalai, Siddhartha Das,  and Karabi Das, Relationship between the microstructure and properties of thermomechanically processed Fe-17Mn and Fe-17Mn-3Al steels, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp. 64-75. https://doi.org/10.1007/s12613-019-1710-3
Research Article

Relationship between the microstructure and properties of thermomechanically processed Fe-17Mn and Fe-17Mn-3Al steels

+ Author Affiliations
  • Corresponding author:

    Karabi Das    E-mail: karabi@metal.iitkgp.ernet.in

  • Received: 15 March 2018Revised: 19 May 2018Accepted: 26 June 2018
  • Two austenitic Mn steels (Fe-17Mn and Fe-17Mn-3Al (wt%, so as the follows)) were subjected to thermomechanical processing (TMP) consisting of forging followed by solutionization and hot rolling. The rolled samples were annealed at 650 and 800℃ to relieve the internal stress and to induce recrystallization. The application of TMP and heat treatment to the Fe-17Mn/Fe-17Mn-3Al steels refined the austenite grain size from 169 μm in the as-solutionized state to 9-13 μm, resulting in a substantial increase in hardness from HV 213 to HV 410 for the Fe-17Mn steel and from HV 210 to HV 387 for the Fe-17Mn-3Al steel. The elastic modulus values, as evaluated by the nanoindentation technique, increased from (175±11) to (220±12) GPa and from (163±15) to (205±13) GPa for the Fe-17Mn and Fe-17Mn-3Al steels, respectively. The impact energy of the thermomechanically processed austenitic Mn steels was lower than that of the steels in their as-solutionized state. The addition of Al to the Fe-17Mn steel decreased the hardness and elastic modulus but increased the impact energy.
  • loading
  • [1]
    H.S. Avery, Austenitic Manganese Steel, Metals Handbook, American Society for Metals, USA, 1961, p. 834.
    [2]
    X.D. Du, G.D. Sun, Y.F. Wang, J.F. Wang, and H.Y. Yang, Abrasion behavior of high manganese steel under low impact energy and corrosive conditions, Adv. Tribol., 2009(2009), art. No. 685648.
    [3]
    A.K. Srivastava and K. Das, Microstructure and abrasive wear study of (Ti,W)C-reinforced high-manganese austenitic steel matrix composite, Mater. Lett., 62(2008), No. 24, p. 3947.
    [4]
    Y.F. Wang, C.M. Qiu, C.G. Lu, and L. Zhang, Effect of conventional cold rolling on wear-resisting performance of high manganese steel, Adv. Mater. Res., 284-286(2011), p. 1493.
    [5]
    J. Mendez, M. Ghoreshy, W.B.F. Mackay, T.J.N. Smith, and R.W. Smith, Weldability of austenitic manganese steel, Mater. Process. Technol., 153-154(2008), p. 596.
    [6]
    F.C. Zhang and T.Q. Lei, A study of friction-induced martensitic transformation for austenitic manganese steel, Wear, 212(1997), No. 2, p. 195.
    [7]
    S.R. Allahkaram, Causes of catastrophic failure of high Mn steel utilized as crusher overlaying shields, Int. J. Eng. Trans. B, 21(2008), No. 1, p. 55.
    [8]
    I. El-Mahallawi, R. Abdel-Karim, and A. Naguib, Evaluation of effect of chromium on wear performance of high manganese steel, Mater. Sci. Technol., 17(2001), No. 11, p. 1385.
    [9]
    E.G. Moghaddam, N. Varahram, and P. Davami, On the comparison of microstructural characteristics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel, Mater. Sci. Eng. A, 532(2012), p. 260.
    [10]
    S.A. Torabi, K. Amini, and M. Naseri, Investigating the effect of manganese content on the properties of high manganese austenitic steels, Int. J. Adv. Des. Manuf. Technol., 10(2017), No. 1, p. 75.
    [11]
    D.S. Lu, Z.Y. Liu, W. Li, Z. Liao, H. Tian, and J.Z. Xian, Influence of carbon content on wear resistance and wear mechanism of Mn13Cr2 and Mn18Cr2 cast steels, China Foundary, 12(2015), No. 1, p. 39.
    [12]
    S.R. Ge, Q.L. Wang, and J.X. Wang, The impact wear-resistance enhancement mechanism of medium manganese steel and its applications in mining machines, Wear, 376-377(2017), p. 1097.
    [13]
    Y.K. Lee and J. Han, Current opinion in medium manganese steel, Mater. Sci. Technol., 31(2014), No. 7, p. 843.
    [14]
    J. Wang, Q.L. Wang, X. Zhang, and D.K. Zhang, Impact and rolling abrasive wear behavior and hardening mechanism for hot-rolled medium-manganese steel, J. Tribol., 140(2018), No. 3, p. 1.
    [15]
    H.T. Si, R.L. Xiong, F. Song, Y.H. Wen, and H.B. Peng, Wear resistance of austenitic steel Fe-17Mn-6Si-0.3C with high silicon and high manganese, Acta Metall. Sin. Engl. Lett., 27(2014), No. 2, p. 352.
    [16]
    Y.H. Wen, H.B. Peng, H.T. Si, R.L. Xiong, and D. Raabe, A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel, Mater. Des., 55(2014), p. 798.
    [17]
    C. Prasad, P. Bhuyan, C. Kaithwas, R. Saha, and S. Mandal, Microstructure engineering by dispersing nano-spheroid cementite in ultrafine-grained ferrite and its implications on strength-ductility relationship in high carbon steel, Mater. Des., 139(2018), p. 324.
    [18]
    D.H. Jeong, F. Gonzalez, G. Palumbo, K. Aust, and U. Erb, The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings, Scripta Mater., 44(2001), No. 3, p. 493.
    [19]
    T.A. El-Bitar and E.M. El-Banna, Improvement of austenitic Hadfield Mn-steel properties by thermomechanical processing, Can. Metall. Q., 39(2000), No. 3, p. 361.
    [20]
    A. Goldberg, O.A. Ruano, and O.D. Sherby, Development of ultrafine microstructures and superplasticity in Hadfield manganese steels, Mater. Sci. Eng. A, 150(1992), No. 2, p. 187.
    [21]
    S. Kang, Y.S. Jung, J.H. Jun, and Y.K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5 Al TWIP steel, Mater. Sci. Eng. A, 527(2010), No. 3, p. 745.
    [22]
    B.K. Zuidema, D.K. Subramanyam, and W.C Leslie, The effect of aluminum on the work hardening and wear resistance of Hadfield manganese steel, Metall. Trans. A, 18(1987), No. 9, p. 1629.
    [23]
    R.W. Smith and W.B.F Mackay, Austenitic manganese steels -developments for heavy haul rail transportation, Can. Metall. Q., 42(2003), No. 3, p. 333.
    [24]
    K.M. Mussert, W.P. Vellinga, A. Bakker, and S. Van Der Zwaag, A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061-Al2O3 MMC, J. Mater. Sci., 37(2002), No. 4, p. 789.
    [25]
    J.W. Leggoe, Determination of the elastic modulus of microscale ceramic particles via nanoindentation, J. Mater. Res., 19(2004), No. 8, p. 2437.
    [26]
    W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology, J. Mater. Res., 19(2004), No. 1, p. 3.
    [27]
    D.J. Shuman, A.L.M. Costa, and M.S. Andrade, Calculating the elastic modulus from nanoindentation and microindentation reload curves, Mater. Charact., 58(2007), No. 4, p. 380.
    [28]
    G.E. Dieter, Mechanical Metallurgy, McGraw Hill UK Ltd., New York, 1986, p. 280.
    [29]
    A. Helth, S. Pilz, T. Kirsten, L. Giebeler, J. Freudenberger, M. Calin, J. Eckert, and A. Gebert, Effect of thermomechanical processing on the mechanical biofunctionality of a low modulus Ti-40Nb alloy, J. Mech. Behav. Biomed. Mater., 65(2017), p. 137.
    [30]
    T. Otomo, H. Matsumoto, N. Nomura, and A. Chiba, Influence of cold-working and subsequent heat-treatment on Young's modulus and strength of Co-Ni-Cr-Mo alloy, Mater. Trans., 51(2010), No. 3, p. 434.
    [31]
    A. Torrents, H. Yang, and F.A. Mohamed, Effect of annealing on hardness and the modulus of elasticity in bulk nanocrystalline nickel, Metall. Mater. Trans. A, 41(2010), No. 3, p. 621.
    [32]
    S. Reeh, D. Music, T. Gebhardt, M. Kasprzak, T. Japel, S. Zaefferer, D. Raabe, S. Richter, A. Schwedt, J. Mayer, B. Wietbrock, G. Hirt, and J.M. Schneider, Elastic properties of face-centred cubic Fe-Mn-C studied by nanoindentation and ab initio calculations, Acta Mater., 60(2012), No. 17, p. 6025.
    [33]
    C. Chen, X.Y. Feng, B. Lv, Z.N. Yang, and F.C. Zhang, A study on aging carbide precipitation behavior of hadfield steel by dynamic elastic modulus, Mater. Sci. Eng. A, 677(2016), p. 446.
    [34]
    D. Singh, P.N. Rao, and R. Jayaganthan, Microstructures and impact toughness behavior of Al 5083 alloy processed by cryorolling and afterwards annealing, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 759.
    [35]
    C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, and H. Dong, Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel, J. Mater. Sci. Technol., 23(2007), No. 5, p. 659.
    [36]
    A.A. Astaf'ev, Effect of grain size on the properties of manganese austenitic steel 110G13L, Met. Sci. Heat Treat., 39(1997), No. 5, p. 198.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(576) PDF Downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return