Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid
-
Graphical Abstract
-
Abstract
Lithium and cobalt recovery from spent lithium-ion batteries (LIBs) is a major focus because of their increased production and usage. The conventional method for recycling spent LIBs using inorganic acids produces harmful byproducts. In this work, the leaching agent was substituted with a less expensive and more environmentally friendly alternative-acetic acid-and a mathematical model was developed to describe the kinetics of the recovery process. The variables used were the pH value, temperature, H2O2 concentration, and the solid-to-liquid (S/L) ratio. The mathematical model used was the shrinking core model, which was modified to accommodate an equilibrium reaction. The experimental results show that the rate of recovery of Li and Co over time was only affected by temperature. The leaching behaviors of Li and Co were found to oppose each other. An increase in temperature resulted in increased recovery of Li but decreased recovery of Co because of the product-favoring endothermic reaction of Li and the reactant-favoring exothermic reaction of Co. The product of Li has a lower entropy value than the reactant as a free-moving ion, whereas the product of Co leaching has a higher entropy value as a stiff crystal complex. Thus, temperature conditioning is a pivotal factor in the leaching of spent LIBs.
-
-