Cite this article as: | Wan-liang Mi, Zhao-sen Liu, Toru Kimura, Atsunori Kamegawa, and Hai-liang Wang, Crystal structure and hydrogen storage properties of (La,Ce)Ni5-xMx (M=Al, Fe, or Co) alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp.108-113. https://dx.doi.org/10.1007/s12613-019-1714-z |
L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature, 414(2001), No. 6861, p. 353.
|
Y.F. Ding, C.E. Wen, P. Hodgson, and Y.C. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys:a review, J. Mater. Chem. B, 2(2014), No. 14, p. 1912.
|
X.W. Yang, Y.F. Zhu, J.G. Zhang, Y. Zhang, Y.N. Liu, H.J. Lin, T.M. Wang, and L.Q. Li, Effect of partial substitution of Ti for Al on the phase structure and electrochemical hydrogen storage properties of Mg3AlNi2 alloy, J. Alloys Compd., 746(2018), p. 421.
|
L.O. Valøen, A. Zaluska, L. Zaluski, H. Tanaka, N. Kuriyama, J.O. Ström-Olsen, and R. Tunold, Structure and related properties of (La,Ce,Nd,Pr)Ni5 alloys, J. Alloys Compd., 306(2000), No. 1-2, p. 235.
|
M.P.S. Kumar, W.L. Zhang, K. Petrov, A.A. Rostami, S. Srinivasan, G.D. Adzic, J.R. Johnson, J.J. Reilly, and H.S. Lim, Effect of Ce, CO and Sn substitution on gas phase and electrochemcal hydriding/dehydriding properties of LaNi5, J. Electrochem. Soc., 142(1995), No. 10, p. 3424.
|
M.H. Mendelsohn, D.M. Gruen, and A.E. Dwight, The effect on hydrogen decomposition pressures of group Ⅲa and IVa element substitutions for Ni in LaNi alloys, Mater. Res. Bull., 13(1978), No. 11, p. 1221.
|
T. Vogt, J.J. Reilly, J.R. Johnson, G.D. Adzic, and J. McBreen, Crystal structure of nonstoichiometric La(Ni,Sn) 5+x alloys and their properties as metal hydride electrodes, Electrochem. Solid-State Lett., 2(1999), No. 3, p. 111.
|
M.H. Mendelsohn, D.M. Gruen, and A.E. Dwight, LaNi5-xAlx is a versatile alloy system for metal hydride applications, Nature, 269(1977), No. 5623, p. 45.
|
M.H. Mendelsohn, D.M. Gruen, and A.E. Dwight, The effect of aluminum additions on the structural and hydrogen absorption properties of AB5 alloys with particular reference to the LaNi5-xAlx ternary alloy system, J. Less-Common Met., 63(1979), No. 2, p. 193.
|
F. Pourarian and W.E. Wallace, Hydrogen storage in Ce-Ni5-xCux, J. Less-Common Met., 87(1982), No. 2, p. 275.
|
R.K. Jain, A. Jain, S. Agarwal, N.P. Lalla, V. Ganesan, D.M. Phase, and I.P. Jain, Characterization and hydrogenation of CeNi5-xCrx (x=0, 1, 2) alloys, J. Alloys Compd., 430(2007), No. 1-2, p. 165.
|
A.B. Aybar and M. Anik, Direct synthesis of La-Mg-Ni-Co type hydrogen storage alloys from oxide mixtures, J. Energy Chem., 26(2017), No. 4, p. 719.
|
S.K. Pandey, A. Srivastava, and O.N. Srivastava, Improvement in hydrogen storage capacity in LaNi5 through substitution of Ni by Fe, Int. J. Hydrogen Energy, 32(2007), No. 13, p. 2461.
|
G. Walker, Solid-state Hydrogen Storage:Materials and Chemistry, Woodhead Publishing Ltd., Cambridge, 2008.
|
G.H. Aylward and T.J.V. Findlay, SI Chemical Data, J. Wiley & Sons, Ltd., New York, 1973.
|
K. Asano, Y. Yamazaki, and Y. Iijima, Hydriding and dehydriding processes of LaNi5-xCox (x=0-2) alloys under hydrogen pressure of 1-5 MPa, Intermetallics, 11(2003), No. 9, p. 911.
|
H.H. Van Mal, K.H.J. Buschow, and F.A. Kuijpers, Hydrogen absorption and magnetic properties of LaCo5xNi5-5x compounds, J. Less-Common Met., 32(1973), No. 2, p. 289.
|
[1] | N. Bayat, G. R. Ebrahimi, A. Momeni, H. R. Ezatpour. Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(2): 181-189. DOI: 10.1007/s12613-018-1561-3 |
[2] | Fang Wang, Wen-qiang Zhang, Wen-long Xiao, Hiroshi Yamagata, Chao-li Ma. Microstructural evolution during reheating of A356 machining chips at semisolid state [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(8): 891-900. DOI: 10.1007/s12613-017-1475-5 |
[3] | Jia-wei Ma, Cui-ping Yang, Zhen-hua Zheng, Kang-sheng Zhang, Wen-yu Ma. Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(11): 1302-1314. DOI: 10.1007/s12613-016-1352-7 |
[4] | Yong-kang Liu, Hai-you Huang, Jian-xin Xie. Effect of compression direction on the dynamic recrystallization behavior of continuous columnar-grained CuNi10Fe1Mn alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(8): 851-859. DOI: 10.1007/s12613-015-1142-7 |
[5] | Wen-xiang Shu, Jun-cheng Liu, Long-gang Hou, Hua Cui, Jun-tao Liu, Ji-shan Zhang. Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(12): 1215-1221. DOI: 10.1007/s12613-014-1029-z |
[6] | Amir Momeni, Shahab Kazemi, Golam Ebrahimi, Alireza Maldar. Dynamic recrystallization and precipitation in high manganese austenitic stainless steel during hot compression [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(1): 36-45. DOI: 10.1007/s12613-014-0862-4 |
[7] | Guo-fa Sui, Jin-shan Li, Hong-wei Li, Feng Sun, Tie-bang Zhang, Heng-zhi Fu. Investigation on the explosive welding mechanism of corrosion-resisting aluminum and stainless steel tubes through finite element simulation and experiments [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(2): 151-158. DOI: 10.1007/s12613-012-0531-4 |
[8] | Zhou-hua Jiang, Zu-rui Zhang, Hua-bing Li, Zhen Li, Ma Qi-feng. Microstructural evolution and mechanical properties of aging high nitrogen austenitic stainless steels [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(6): 729-736. DOI: 10.1007/s12613-010-0381-x |
[9] | Ling Zhang, Wangyue Yang, Zuqing Sun. Modeling of microstructural evolution during dynamic recrystallization in coarse Nb microalloyed austenite [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(2): 130-135. DOI: 10.1016/S1005-8850(07)60026-7 |
[10] | Zhiyuan Shi, Wanjun Wang, Zhigang Kan, Jinglin Wen, Xinhua Wang. Simulation of Temperature and Flow Field by Three Dimension Finite Element Method for Castex Process of AS Wire [J]. International Journal of Minerals, Metallurgy and Materials, 1999, 6(4): 262-267. |