Cite this article as: |
Kai-qi Zhang, Hai-qing Yin, Xue Jiang, Xiu-qin Liu, Fei He, Zheng-hua Deng, Dil Faraz Khan, Qing-jun Zheng, and Xuan-hui Qu, A novel approach to predict green density by high-velocity compaction based on the materials informatics method, Int. J. Miner. Metall. Mater., 26(2019), No. 2, pp. 194-201. https://doi.org/10.1007/s12613-019-1724-x |
Hai-qing Yin E-mail: hqyin@ustb.edu.cn
[1] |
D. Jauffrès, O. Lame, G. Vigier, and F. Doré, Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction, Polymer, 48(2007), No. 21, p. 6374.
|
[2] |
P. Skoglund, High density PM parts by high velocity compaction, Powder Metall., 44(2001), No. 3, p. 199.
|
[3] |
J.Z, Wang, H.Q Yin, and X.H. Qu, Analysis of density and mechanical properties of high velocity compacted iron powder, Acta Metall. Sin. Engl. Lett., 22(2009), No. 6, p. 447.
|
[4] |
G. Sethi, E. Hauck, and R.M. German, High velocity compaction compared with conventional compaction, Mater. Sci. Technol., 22(2006), No. 8, p. 955.
|
[5] |
Z.Q. Yan, F. Chen, Y.X. Cai, J. Yin, and Y.K. Zheng, Preparation and properties of Ti-4.5Al-6.8Mo-1.5Fe alloy by high-velocity compaction, Powder Technol., 246(2013), p. 345.
|
[6] |
P.Y. Huang, The Principle of Powder Metallurgy, Metallurgical Industry Press, Beijing, 1997.
|
[7] |
A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary:The materials project:A materials genome approach to accelerating materials innovation, APL Mater., 1(2013), No. 1, art. No. 011002.
|
[8] |
J.P. Holdren, Materials Genome Initiative for Global Competitiveness, National Science and Technology Council OSTP Washington, Washington, 2011.
|
[9] |
G.J. Schmitz and U. Prahl, Integrative Computational Materials Engineering:Concepts Applications of a Modular Simulation Platform, John Wiley & Sons, New Jersey, 2012.
|
[10] |
K. Rajan, Materials informatics:The materials "gene" and big data, Annu. Rev. Mater. Res., 45(2015), p. 153.
|
[11] |
X.Y. Yang, Z.G. Wang, X.S. Zhao, J.L. Song, M.M. Zhang, and H.D. Liu, MatCloud:A high-throughput computational infrastructure for integrated management of materials simulation, data and resources, Comput. Mater. Sci., 146(2018), p. 319.
|
[12] |
L.R. Zhao, K. Chen, Q. Yang, J.R. Rodgers, and S.H. Chiou, Materials informatics for the design of novel coatings, Surf. Coat. Technol., 200(2005), No. 5-6, p. 1595.
|
[13] |
J.K. Nørskov and T. Bligaard, The catalyst genome, Angew. Chem. Int. Ed., 52(2013), No. 3, p. 776.
|
[14] |
K. Takahashi and Y. Tanaka, Materials informatics:a journey towards material design and synthesis, Dalton Trans., 45(2016), No. 26, p. 10497.
|
[15] |
H. Ohno, Empirical studies of Gaussian process based Bayesian optimization using evolutionary computation for materials informatics, Expert Syst. Appl., 96(2018), p. 25.
|
[16] |
D.Z. Xue, D.Q. Xue, R.H. Yuan, Y.M. Zhou, P.V. Balachandran, X.D. Ding, J. Sun, and T. Lookman, An informatics approach to transformation temperatures of NiTi-based shape memory alloys, Acta Mater., 125(2017), p. 532.
|
[17] |
D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, and T. Lookman, Accelerated search for materials with targeted properties by adaptive design, Nat. Commun., 7(2016), Art. No. 11241.
|
[18] |
P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, and A.J. Norquist, Machine-learning-assisted materials discovery using failed experiments, Nature, 533(2016), p. 73.
|
[19] |
B. Hu, K.L. Lu, Q. Zhang, X.B. Ji, and W.C. Lu, Data mining assisted materials design of layered double hydroxide with desired specific surface area, Comput. Mater. Sci., 136(2017), p. 29.
|
[20] |
A. Smola and S.V.N. Vishwanathan, Introduction to Machine Learning, Cambridge University Press, Cambridge, 2004.
|
[21] |
T. Marwala, Finite-element-model Updating Using Computational Intelligence Techniques:Applications to Structural Dynamics, Springer-Verlag, London, 2010.
|
[22] |
J.J. Möller, W. Körner, G. Krugel, D.F. Urban, and C. Elsässer, Compositional optimization of hard-magnetic phases with machine-learning models, Acta Mater., 153(2018), p. 53.
|
[23] |
J. Cai, J.W. Luo, S.L. Wang, and S. Yang, Feature selection in machine learning:A new perspective, Neurocomputing, 300(2018), p. 70.
|
[24] |
H.F. Fischmeister, E. Arzt, and L.R. Olsson, Particle deformation and sliding during compaction of spherical powders:A study by quantitative metallography, Powder Metall., 21(1978), No. 4, p. 179.
|
[25] |
D. Bortzmeyer, G. Langguth, and G. Orange, Fracture mechanics of green products, J. Eur. Ceram. Soc., 11(1993), No. 1, p. 9.
|
[26] |
Z.Y. Liu, T.B. Sercombe, and G.B. Schaffer, The effect of particle shape on the sintering of aluminum, Metall. Mater. Trans. A, 38(2007), No. 6, p. 1351.
|
[27] |
A.D. Rosato, T. Vreeland, and F.B. Prinz, Manufacture of powder compacts, Int. Mater. Rev., 36(1991), No. 2, p. 45.
|
[28] |
D.W. Yang and L. Miao, Probability Theory and Mathematical Statistics, Science Press, Beijing, 2014.
|
[29] |
R.M. German, Powder Metallurgy and Particulate Materials Processing, Metal Powder Industry, New Jersey, 2005.
|
[30] |
S. Maldonado, J. López, and M. Carrasco, A second-order cone programming formulation for twin support vector machines, Appl. Intell., 45(2016), No. 2, p. 265.
|
[31] |
J. Luts, F. Ojeda, R.V. de Van, B. De Moor, S. Van Huffel, and J.A.K. Suykens, A tutorial on support vector machine-based methods for classification problems in chemometrics, Anal. Chim. Acta, 665(2010), No. 2, p. 129.
|
[32] |
B. Richhariya and M. Tanveer, EEG signal classification using universum support vector machine, Expert Syst. Appl., 106(2018), p. 169.
|
[33] |
M.W. Gardner and S.R. Dorling, Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences, Atmos. Environ., 32(1998) No. 14-15, p. 2627.
|
[34] |
T. Varol, A. Canakci, and S. Ozsahin, Modeling of the prediction of densification behavior of powder metallurgy Al-Cu-Mg/B4C composites using artificial neural networks, Acta Metall. Sin. Engl. Lett., 28(2015), No. 2, p. 182.
|
[35] |
B. Shunag, Growing random forest on deep convolutional neural networks for scene categorization, Expert Syst. Appl., 71(2017), p. 279.
|
[36] |
X. Jiang, H.Q. Yin, C. Zhang, R.J. Zhang, K.Q. Zhang, Z.H. Deng, G.Q. Liu, and X.H. Qu, A materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction, Comput. Mater. Sci., 143(2018), p. 295.
|
[37] |
T. Chai and R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7(2014), p. 1247.
|