Li-ying Qi, Su-e Hao, and Tian-cheng Sun, Preparation of rare-earth-modified medical stone powders and their application as conductive fillers, Int. J. Miner. Metall. Mater., 26(2019), No. 2, pp. 260-266. https://doi.org/10.1007/s12613-019-1731-y
Cite this article as:
Li-ying Qi, Su-e Hao, and Tian-cheng Sun, Preparation of rare-earth-modified medical stone powders and their application as conductive fillers, Int. J. Miner. Metall. Mater., 26(2019), No. 2, pp. 260-266. https://doi.org/10.1007/s12613-019-1731-y
Research Article

Preparation of rare-earth-modified medical stone powders and their application as conductive fillers

+ Author Affiliations
  • Corresponding author:

    Su-e Hao    E-mail: haosue@hit.edu.cn

  • Received: 17 March 2018Revised: 15 July 2018Accepted: 21 September 2018
  • Traditional metal conductive fillers are expensive and prone to oxidation. Thus, the development of new conductive powders as fillers is urgently needed. A novel gaseous penetration technology was adopted to prepare La-doped medical stone powders (La-MSPs), which are inexpensive mesoporous materials, as a new kind of conductive filler material. The prepared La-MSPs attained a resistivity of 450 Ω·m and were used as a filler to prepare conductive coatings with epoxy resin as the resin matrix. The influence of the La-MSPs dosage on the resistance and hardness of the coatings was also determined. The resistance and the hardness both decreased with increasing filler dosage. Finally, the optimum recipe of the conductive coatings with the most suitable fillers dosage (55wt%) was obtained. The hardness and resistance of the coatings with 55wt% La-MSPs were HV 4 and 5.5×107 Ω, respectively.
  • loading
  • [1]
    G.Z. Li, L.J. Feng, P.R. Tong, and Z. Zhai, The properties of MWCNT/polyurethane conductive composite coating prepared by electrostatic spraying, Prog. Org. Coat., 90(2016), p. 284.
    [2]
    M. Mobin, J. Aslam, and R. Alam, Anti-corrosive properties of Poly(aniline-co-2,3-xylidine)/ZnO nanocomposite coating on low-carbon steel, J. Adhes. Sci. Technol., 31(2017), No. 7, p. 749.
    [3]
    Q.L. Wen, W.C. Zhou, J.B. Su, Y.C. Qing, F. Luo, and D.M. Zhu, High performance electromagnetic interference shielding of lamellar MoSi2/glass composite coatings by plasma spraying, J. Alloys Compd., 666(2016), p. 359.
    [4]
    R.D. Farahani, M. Gagne, J.E. Klemberg-Sapieha, and T. Daniel, Electrically conductive silver nanoparticles-filled nanocomposite materials as surface coatings of composite structures, Adv. Eng. Mater., 18(2016), No. 7, p. 1189.
    [5]
    X.Z. Gao, H.J. Liu, F. Cheng, and Y. Chen, Thermoresponsive polyaniline nanoparticles:Preparation, characterization, and their potential application in waterborne anticorrosion coatings, Chem. Eng. J., 283(2016), p. 682.
    [6]
    H. Singh, T.S. Sidhu, and S.B.S. Kalsi, Behavior of Ni-based superalloys in an actual waste incinerator plant under cyclic conditions for 1000 h at 900℃, Corrosion, 70(2014), No. 12, p. 1249.
    [7]
    M. Abbasi and M.M. Verdian, Processing and properties of CuAl2 intermetallic coatings, Surf. Eng., 33(2017), No. 3, p. 186.
    [8]
    C. Guo, H.J. Duan, C.Y. Dong, G.Z. Zhao, Y.Q. Liu, and Y.Q. Yang, Preparation of the polypropylene/nickel coated glass fibers conductive composites with a low percolation threshold, Mater. Lett., 143(2015), p. 124.
    [9]
    M.M. Momeni, S. Hashemizadeh, M. Mirhosseini, A. Kazempour, and S.A. Hosseinizadeh, Preparation, characterisation, hardness and antibacterial properties of Zn-Ni-TiO2 nanocomposites coatings, Surf. Eng., 32(2016), No. 7, p. 490.
    [10]
    M. Jafari, A. Rahimi, P. Shokrolahi, and A.E. Langroudi, Synthesis of antistatic hybrid nanocomposite coatings using surface modified indium tin oxide (ITO) nanoparticles, J. Coat. Technol. Res., 11(2014), No. 4, p. 587.
    [11]
    C.C. Chang, F. Hwang, C.Y. Hsieh, C.C. Chen, and L.P. Cheng, Preparation and characterization of polymer/zirconia nanocomposite antistatic coatings on plastic substrates, J. Coat. Technol. Res., 10(2013), No. 1, p. 73.
    [12]
    Q.Y. Shang, S.E. Hao, W.L. Wang, D.S. Fu, and T.L. Ma, Preparation and characterization of antistatic coatings with modified BaTiO3 powders as conductive fillers, J. Adhes. Sci. Technol., 27(2013), p. 2642.
    [13]
    L.H. Yu, T. Huang, and J.H Xu, Microstructure, mechanical and tribological properties of TaCN composite films, Surf. Eng., 33(2017), No. 1, p. 1.
    [14]
    F.W. Wang, C.Q. Cui, S.T. Zhang, and J. Wang, Influences of copper roughness on the electrical and mechanical performances of embedded capacitance materials, J. Adhes. Sci. Technol., 30(2017), No. 12, p. 1364.
    [15]
    S.Y. Meng, H.B. Wu, S.P. Wu, and Y.X. Tang, Preparation of ultrafine silver powder and its electrical properties, Electron. Compon. Mater., 23(2004), No. 7, p. 35.
    [16]
    H.J. Jiang, K.S. Moon, Y. Li, and C. Wong, Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites, Chem. Mater., 18(2006), No. 13, p. 1969.
    [17]
    C. Zhuang and Z. Li, Mechanical characterisation of Si-C-N thin films prepared by electron cyclotron resonance plasma chemical vapour deposition at low microwave power and low temperature, Surf. Eng., 32(2016), No. 11, p. 1.
    [18]
    S.R. Anvari, S.M. Monirvaghefi, and M.H. Enayati, Wear characteristics of functionally graded nanocrystalline Ni-P coatings, Surf. Eng., 31(2015), No. 9, p. 693.
    [19]
    T.P. Gao, W.B. Wang, and A.Q. Wang, A pH-sensitive composite hydrogel based on sodium alginate and medical stone:synthesis, swelling, and heavy metal ions adsorption properties, Macromol. Res., 19(2011), No. 7, p. 739.
    [20]
    R.Q. Gao and X.M. Hou, Preparation and photo-catalytic activity of TiO2-coated medical stone-based porous ceramics, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 593.
    [21]
    J.L. Li, S.E. Hao, D.S. Fu, W. Wang, T.L. Ma, and C.Y. Wang, Modification of Ag-doped BaTiO3 powders through La gaseous penetration route, J. Rare Earths, 28(2010), p. 154.
    [22]
    F.W. Wang, S.E. Hao, J.L. Li, J.T. Wang, Y. Gao, Y.F. Shen, and S.Y. Wang, Significant modification to Bi-doped BaTiO3 by Sm in gaseous penetration process, J. Mater. Sci. Mater. Electron., 25(2014), No. 8, p. 3543.
    [23]
    J.L. Li, S.E. Hao, F.W. Wang, Y. Gao, J.T. Wang, and Y.F. Shen, Significant promotion to electrical properties of Sm modified BaLaxSmxTiO3 (0.001 ≤ x ≤ 0.005) powders:A novel precursor gaseous penetration route, Sci. Adv. Mater., 7(2015), No. 1, p. 35.
    [24]
    D.S. Fu, S.E. Hao, J.L. Li, and L.S. Qiang, Effects of the penetration temperature on structure and electrical conductivity of samarium modified BaTiO3 powders, J. Rare Earths, 29(2011), No. 2, p. 164.
    [25]
    Y.J. Li, S.E. Hao, F.W. Wang, X.R. Liu, and X.W. Meng, Investigation on relationship among calcination temperature, grain size, Mn valence and resistivity of Ca0.75Er0.25MnO3-δ powders, J. Mater. Sci. Mater. Electron., 26(2015), No. 1, p. 176.
    [26]
    X.W. Meng, S.E. Hao, J.L. Li, Q.Y. Fu, and D.S. Fu, Preparation of Ca0.8Sm0.2MnO3 powders and effects of calcination temperature on structure and electrical property, Powder Technol., 224(2012), p. 96.
    [27]
    P.J.M. Carrott and K.S.W. Sing, Assessment of microporosity, Stud. Surf. Sci. Catal., 9(1988), p. 77.
    [28]
    T. Matthias, K. Katsumi, V.N. Alexander, P.O. James, R.R. Francisco, R. Jean, and S.W.S. Kenneth, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87(2015), No. 9-10, p. 1051.
    [29]
    E.A. Prasetyanto, S. Sujandi, S.C. Lee, and S.E. Park, Highly dispersed CuO nanoparticles on SBA-16 type mesoporous silica with cyclam SBA-16 as a precursor, Bull. Korean Chem. Soc., 28(2007), No. 12, p. 2359.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (202) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return