Zhi-yuan Chen, Li-jun Wang, Xiao-jia Du, Zai-hong Sun, Fu-shen Li, and Kuo-Chih Chou, Carbon deposition in porous nickel/yttria-stabilized zirconia anode under methane atmosphere, Int. J. Miner. Metall. Mater., 26(2019), No. 3, pp. 350-359. https://doi.org/10.1007/s12613-019-1744-6
Cite this article as:
Zhi-yuan Chen, Li-jun Wang, Xiao-jia Du, Zai-hong Sun, Fu-shen Li, and Kuo-Chih Chou, Carbon deposition in porous nickel/yttria-stabilized zirconia anode under methane atmosphere, Int. J. Miner. Metall. Mater., 26(2019), No. 3, pp. 350-359. https://doi.org/10.1007/s12613-019-1744-6
Research Article

Carbon deposition in porous nickel/yttria-stabilized zirconia anode under methane atmosphere

+ Author Affiliations
  • Corresponding author:

    Li-jun Wang    E-mail: lijunwang@ustb.edu.cn

  • Received: 9 May 2018Revised: 2 July 2018Accepted: 9 July 2018
  • A commercial solid oxide fuel cell with a Ni/YSZ anode was characterized under a pure methane atmosphere. The amount of deposited carbon increased with an increase in temperature but decreased when the temperature exceeded 700℃. The reactivity of carbon decreased with increasing deposition temperature. Filamentous carbon was deposited from 400 to 600℃, whereas flake carbon was deposited at 700 and 800℃. With increasing temperature, the intensity ratio of the D band over the sum of the G and D bands was constant at the beginning and then decreased with the transformation of the carbon morphology. The crystallite size increased from 2.9 to 13 nm with increasing temperature. The results also indicated that the structure of the deposited carbon was better ordered with increasing deposition temperature. In comparison with pure Ni powders, the interaction between the YSZ substrate and Ni particles could not only modify the carbon deposition kinetics but also reduce the temperature effect on the structure and reactivity variation of carbon.
  • loading
  • [1]
    E.S. Hecht, G.K. Gupta, H.Y. Zhu, A.M. Dean, R.J. Kee, L. Maier, and O. Deutschmann, Methane reforming kinetics within a Ni-YSZ SOFC anode support, Appl. Catal. A, 295(2005), No. 1, p. 40.
    [2]
    H. Sumi, Y.H. Lee, H. Muroyama, T. Matsui, and K. Eguchi, Comparison between internal steam and CO2 reforming of methane for Ni-YSZ and Ni-ScSZ SOFC anodes, J. Electrochem. Soc., 157(2010), No. 8, p. B1118.
    [3]
    E.P. Murray, T. Tsai, and S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature, 400(1999), No. 6745, p. 649.
    [4]
    S. Park, R. Craciun, J.M. Vohs, and R.J. Gorte, Direct oxidation of hydrocarbons in a solid oxide fuel cell:I. Methane oxidation, J. Electrochem. Soc., 146(1999), No. 10, p. 3603.
    [5]
    S. Park, J.M. Vohs, and R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 404(2000), No. 6775, p. 265.
    [6]
    T. Kim, S. Moon, and S.I. Hong, Internal carbon dioxide reforming by methane over Ni-YSZ-CeO2 catalyst electrode in electrochemical cell, Appl. Catal. A, 224(2002), No. 1-2, p. 111.
    [7]
    I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, and A. Sodo, Ni/CeO2-Al2O3 catalysts for the dry reforming of methane:The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance, Appl. Catal. A, 500(2015), p. 12.
    [8]
    J. Maček, B. Novosel, and M. Marinšek, Ni-YSZ SOFC anodes-Minimization of carbon deposition, J. Eur. Ceram. Soc., 27(2007), No. 2-3, p. 487.
    [9]
    T. Takeguchi, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Y. Uchida, A. Ueno, K. Omoshiki, and M. Aizawa, Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets, J. Power Sources, 112(2002), No. 2, p. 588.
    [10]
    H. Sumi, K. Ukai, Y. Mizutani, H. Mori, C.J. Wen, H. Takahashi, and O. Yamamoto, Performance of nickel-scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O-CH4, Solid State Ionics, 174(2004), No. 1-4, p. 151.
    [11]
    K. Ke, A. Gunji, H. Mori, S. Tsuchida, H. Takahashi, K. Ukai, Y. Mizutani, H. Sumi, M. Yokoyama, and K. Waki, Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs, Solid State Ionics, 177(2006), No. 5-6, p. 541.
    [12]
    H. Takahashi, T. Takeguchi, N. Yamamoto, M. Matsuda, E. Kobayashi, and W. Ueda, Effect of interaction between Ni and YSZ on coke deposition during steam reforming of methane on Ni/YSZ anode catalysts for an IR-SOFC, J. Mol. Catal. A, 350(2011), No. 1-2, p. 69.
    [13]
    T. Horita, K. Yamaji, T. Kato, N. Sakai, and H. Yokokawa, Design of metal/oxide interfaces for the direct introduction of hydrocarbons into SOFCs, J. Power Sources, 131(2004), No. 1, p. 299.
    [14]
    J. Kubota, S. Hashimoto, T. Shindo, K. Yashiro, T. Matsui, K. Yamaji, H. Kishimoto, and T. Kawada, Self-modification of Ni metal surfaces with CeO2 to suppress carbon deposition at solid oxide fuel cell anodes, Fuel Cells, 17(2017), No. 3, p. 402.
    [15]
    Z.Y. Chen, L.Z. Bian, L.J. Wang, Z.Y. Yu, H.L. Zhao, F.S. Li, and K.C. Chou, Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850℃, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 574.
    [16]
    H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, and J.R. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal., 209(2002), No. 2, p. 365.
    [17]
    A. Oberlin, M. Endo, and T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth, 32(1976), No. 3, p. 335.
    [18]
    Z.Y. Chen, L.J. Wang, Y.D. Gong, D. Tang, F.S. Li, and K.C. Chou, Effect of ozone on the performance of solid oxide fuel cell with Sm0.5Sr0.5CoO3 cathode, J. Power Sources, 255(2014), p. 59.
    [19]
    Z. Cheng and M. Liu, Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy, Solid State Ionics, 178(2007), No. 13-14, p. 925.
    [20]
    F. Li and J.S. Lannin, Disorder induced Raman scattering of nanocrystalline carbon, Appl. Phys. Lett., 61(1992), No. 17, p. 2116.
    [21]
    W.S. Bacsa, J.S. Lannin, D.L. Pappas, and J.J. Cuomo, Raman scattering of laser-deposited amorphous carbon, Phys. Rev. B, 47(1993), No. 16, p. 10931.
    [22]
    A.L. Pinheiro, A.N. Pinheiro, A. Valentini, J.M. Filho, F.F. de Sousa, J.R. de Sousa, C.R. M. da Graça, P. Bargiela, and A.C. Oliveira, Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane, Catal. Commun., 11(2009), No. 1, p. 11.
    [23]
    A.E. Galetti, M.F. Gomez, L.A. Arrúa, and M.C. Abello, Ni catalysts supported on modified ZnAl2O4 for ethanol steam reforming, Appl. Catal. A, 380(2010), No. 1-2, p. 40.
    [24]
    H.F. Abbas and W.M.A.W. Daud, Hydrogen production by methane decomposition:A review, Int. J. Hydrogen Energy, 35(2010), No. 3, p. 1160.
    [25]
    C.M. Finnerty, N.J. Coe, R.H. Cunningham, and R.M. Ormerod, Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane, Catal. Today, 46(1998), No. 2-3, p. 137.
    [26]
    M. Inoue, K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, and K. Ishii, Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600-750℃, Diamond Relat. Mater., 17(2008), No. 7-10, p. 1471.
    [27]
    A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61(2000), No. 20, p. 14095.
    [28]
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information, Carbon, 43(2005), No. 8, p. 1731.
    [29]
    T. Jawhari, A. Roid, and J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 33(1995), No. 11, p. 1561.
    [30]
    G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, and O. Paris, A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy, Carbon, 44(2006), No. 15, p. 3239.
    [31]
    J.D. Herdman, B.C. Connelly, M.D. Smooke, M.B. Long, and J.H. Miller, A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames, Carbon, 49(2011), No. 15, p. 5298.
    [32]
    F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53(1970), No. 3, p. 1126.
    [33]
    S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition, J. Appl. Phys., 97(2005), No. 10, p. 104320.
    [34]
    D.S. Knight and W.B. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res., 4(1989), No. 2, p. 385.
    [35]
    A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, and J.M.D. Tascón, Raman microprobe studies on carbon materials, Carbon, 32(1994), No. 8, p. 1523.
    [36]
    C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel, 86(2007), No. 15, p. 2316.
    [37]
    Y. Wang, D.C. Alsmeyer, and R.L. McCreery, Raman spectroscopy of carbon materials:structural basis of observed spectra, Chem. Mater., 2(1990), No. 5, p. 557.
    [38]
    R.C. Maher, V. Duboviks, G.J. Offer, M. Kishimoto, N.P. Brandon, and L.F. Cohen, Raman spectroscopy of solid oxide fuel cells:Technique overview and application to carbon deposition analysis, Fuel Cells, 13(2013), No. 4, p. 455.
    [39]
    J. Kuhn and O. Kesler, Method for in situ carbon deposition measurement for solid oxide fuel cells, J. Power Sources, 246(2014), p. 430.
    [40]
    C. Su, Y.Z. Wu, W. Wang, Y. Zheng, R. Ran, and Z.P. Shao, Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel, J. Power Sources, 195(2010), No. 5, p. 1333.
    [41]
    T. Skalar, E. Jelen, B. Novosel, and M. Marinšek, Oxidation of carbon deposits on anode material Ni-YSZ in solid oxide fuel cells, J. Therm. Anal. Calorim., 127(2017), No. 1, p. 265.
    [42]
    Y. Kim, J.H. Kim, J. Bae, C.W. Yoon, and S.W. Nam, In situ analyses of carbon dissolution into Ni-YSZ anode materials, J. Phys. Chem. C, 116(2012), No. 24, p. 13281.
    [43]
    N. Muradov, F. Smith, and A. T-Raissi, Catalytic activity of carbons for methane decomposition reaction, Catal. Today, 102-103(2005), p. 225.
    [44]
    J.J. Cuomo, J.P. Doyle, J. Bruley, and J.C. Liu, Sputter deposition of dense diamond-like carbon films at low temperature, Appl. Phys. Lett., 58(1991), No. 5, p. 466.
    [45]
    T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, and Y. Ikuhara, Atomic and electronic structures of Ni/YSZ (111) interface, Mater. Trans., 45(2004), No. 7, p. 2137.
    [46]
    Y.F. Dong, S.J. Wang, J.W. Chai, Y.P. Feng, and C.H.A. Huan, Impact of interface structure on Schottky-barrier height for Ni/ZrO2(001) interfaces, Appl. Phys. Lett., 86(2005), No. 13, p. 132103.
    [47]
    S. Kasamatsu, T. Tada, and S. Watanabe, First principles study of oxygen vacancies near nickel/zirconia interface, J. Surf. Sci. Nanotechnol., 8(2010), p. 93.
    [48]
    A. Feinberg and C.H. Perry, Structural disorder and phase transitions in ZrO2-Y2O3 system, J. Phys. Chem. Solids, 42(1981), No. 6, p. 513.
    [49]
    C. Li and M.J. Li, UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3-ZrO2 and SO42-/ZrO2, J. Raman Spectrosc., 33(2002), No. 5, p. 301.
    [50]
    S. Karlin and P. Colomban, Phase diagram, short-range structure, and amorphous phases in the ZrO2-GeO2(-H2O) system, J. Am. Ceram. Soc., 82(1999), No. 3, p. 735.
    [51]
    D.W. Liu, C.H. Perry, and R.P. Ingel, Infrared spectra in nonstoichiometric yttria-stabilized zirconia mixed crystals at elevated temperatures, J. Appl. Phys., 64(1988), No. 3, p. 1413.
    [52]
    D.J. Kim, H.J. Jung, and I.S. Yang, Raman spectroscopy of tetragonal zirconia solid solutions, J. Am. Ceram. Soc., 76(1993), No. 8, p. 2106.
    [53]
    J. Carrasco, L. Barrio, P. Liu, J.A. Rodriguez, and M.V. Ganduglia-Pirovano, Theoretical studies of the adsorption of CO and C on Ni(111) and Ni/CeO2(111):Evidence of a strong metal-support interaction, J. Phys. Chem. C, 117(2013), No. 16, p. 8241.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(592) PDF Downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return