Cite this article as: |
Xun Liu, Xing Chen, and Kai Huang, Segmented tubular synthesis of monodispersed microsized copper oxalate, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 460-466. https://doi.org/10.1007/s12613-019-1753-5 |
Kai Huang E-mail: khuang@metall.ustb.edu.cn
[1] |
F. Roux, S. Amtablian, M. Anton, et al., Chalcopyrite thin-film solar cells by industry-compatible ink-based process, Sol. Energy Mater. Sol. Cells, 115(2013), p. 86.
|
[2] |
H. Min, B. Lee, S. Jeong, and M. Lee, Fabrication of 10μm-scale conductive Cu patterns by selective laser sintering of Cu complex ink, Opt. Laser Technol., 88(2017), p. 128.
|
[3] |
C.W. Chang, T.Y. Cheng, and Y.C. Liao, Encapsulated silver nanoparticles in water/oil emulsion for conductive inks, J. Taiwan Inst. Chem. Eng., 92(2018), p. 8.
|
[4] |
S. Bose, S. Chakraborty, and D. Sanyal, Water-ethylene glycol mediated synthesis of silver nanoparticles for conductive ink, Mater. Today Proc., 5(2018), No. 3, p. 9941.
|
[5] |
J. Kastner, T. Faury, H.M. Außerhuber, et al., Silver-based reactive ink for inkjet-printing of conductive lines on textiles, Microelectron. Eng., 176(2017), p. 84.
|
[6] |
Z.H. Wang, W. Wang, Z.K. Jiang, and D. Yu, Low temperature sintering nano-silver conductive ink printed on cotton fabric as printed electronics, Prog. Org. Coat., 101(2016), p. 604.
|
[7] |
B.J. De Gans, P.C. Duineveld, and U.S. Schubert, Inkjet printing of polymers:State of the art and future developments, Adv. Mater., 16(2010), No. 3, p. 203.
|
[8] |
D. Kim, S. Jeong, and J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection, Nanotechnology, 17(2006), No. 16, p. 4019.
|
[9] |
T.Öhlund, A.K. Schuppert, M. Hummelgård, J. Bäckström, H.E. Nilsson, and H. Olin, Inkjet fabrication of copper patterns for flexible electronics:Using paper with active precoatings, ACS Appl. Mater. Interfaces, 7(2015), No. 33, p. 18273.
|
[10] |
Y. Hokita, M. Kanzaki, T. Sugiyama, R. Arakawa, and H. Kawasaki, High-concentration synthesis of sub-10 nm copper nanoparticles for application to conductive nanoinks, ACS Appl. Mater. Interfaces, 7(2015), No. 34, p. 19382.
|
[11] |
T. Sugiyama, M. Kanzaki, R. Arakawa, and H. Kawasaki, Low-temperature sintering of metallacyclic stabilized copper nanoparticles and adhesion enhancement of conductive copper film to a polyimide substrate, J. Mater. Sci. Mater. Electron., 27(2016), No. 7, p. 7540.
|
[12] |
A. Yabuki, Y. Tachibana, and I.W. Fathona, Synthesis of copper conductive film by low-temperature thermal decomposition of copper-aminediol complexes under an air atmosphere, Mater. Chem. Phys., 148(2014), No. 1-2, p. 299.
|
[13] |
A. Yabuki, N. Arriffin, and M. Yanase, Low-temperature synthesis of copper conductive film by thermal decomposition of copper-amine complexes, Thin Solid Films, 519(2011), No. 19, p. 6530.
|
[14] |
A. Yabuki and S. Tanaka, Electrically conductive copper film prepared at low temperature by thermal decomposition of copper amine complexes with various amines, Mater. Res. Bull., 47(2012), No. 12, p. 4107.
|
[15] |
D. Adner, F.M. Wolf, S. Möckel, J. Perelaer, U.S. Schubert, and H. Lang, Copper (Ⅱ) ethylene glycol carboxylates as precursors for inkjet printing of conductive copper patterns, Thin Solid Films, 565(2014), p. 143.
|
[16] |
Y. Dong, X.D. Li, S.H. Liu, Q. Zhu, M. Zhang, J.G. Li, and X.D. Sun, Optimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates:The case study of amines, Thin Solid Films, 616(2016), p. 635.
|
[17] |
A.T. Royappa, A.D. Royappa, R.F. Moral, et al., Copper (I) oxalate complexes:Synthesis, structures and surprises, Polyhedron, 119(2016), p. 563.
|
[18] |
A. Manz, N. Graber, and H.M. Widmer, Miniaturized total chemical analysis systems:A novel concept for chemical sensing, Sens. Actuators B, 1(1990), No. 1-6, p. 244.
|
[19] |
J.H. Chun, S. Lu, Y.S. Lee, and V.W. Pike, Fast and high-yield micro-reactor syntheses of ortho-substituted[18F]fluoroarenes from reactions of[18F]fluoride ion with diaryliodonium salts, J. Org. Chem., 75(2010), No. 10, p. 3332.
|
[20] |
S.J. Haswell, R.J. Middleton, B. O'Sullivan, V. Skelton, P. Watts, and P. Styring, ChemInform abstract:The application of micro reactors to synthesis chemistry, Cheminform, 32(2010), No. 23, DOI: 10.1002/chin.200123238.
|
[21] |
K. Schubert, J. Brandner, M. Fichtner, G. Linder, U. Schygulla, and A. Wenka, Microstructure devices for applications in thermal and chemical process engineering, Microscale Thermophys. Eng., 5(2001), No. 1, p. 17.
|
[22] |
K. Jähnisch, V. Hessel, H. Löwe, and M. Baerns, Chemistry in microstructured reactors, Angew. Chem. Int. Ed., 43(2004), No. 4, p. 406.
|
[23] |
M.T. Tang, Theory and Technology of Complex Metallurgy, Central South University Press, Changsha, 2011.
|
[24] |
X.W. Yang and D.F. Qiu, Hydrometallurgy, 2nd Ed., Metallurgical Industry Press, Beijing, 2011.
|
[25] |
X.L. Zhou, Z.G. Yan, and X.D. Han, From ascorbic acid to oxalate:Hydrothermal synthesis of copper oxalate microspheres and conversion to oxide, Mater. Lett., 118(2014), p. 39.
|