Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization
-
Graphical Abstract
-
Abstract
The hot deformation behaviors of a 9Cr oxide dispersion-strengthened (9Cr-ODS) steel fabricated by mechanical alloying and hot isostatic pressing (HIP) were investigated. Hot compression deformation experiments were conducted on a Gleeble 3500 simulator in a temperature range of 950-1100℃ and strain rate range of 0.001-1 s-1. The constitutive equation that can accurately describe the relationship between the rheological stress and the strain rate of the 9Cr-ODS steel was established, and the deformation activation energy was calculated as 780.817 kJ/mol according to the data obtained. The processing maps of 9Cr-ODS in the strain range of 0.1-0.6 were also developed. The results show that the region with high power dissipation efficiency corresponds to a completely recrystallized structure. The optimal processing conditions were determined as a temperature range of 1000-1050℃ with strain rate between 0.003 and 0.01 s-1.
-
-