Cite this article as: |
Jian-guo Liu, Long-zhe Jin, Jia-ying Wang, Sheng-nan Ou, Jing-zhong Guo, and Tian-yang Wang, Micromorphology and physicochemical properties of hydrophobic blasting dust in iron mines, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 665-672. https://doi.org/10.1007/s12613-019-1793-x |
Long-zhe Jin E-mail: lzjin@ustb.edu.cn
[1] |
X.T. Feng, J.P Liu, B.R Chen, Y.X Xiao, G.L Feng, and F.P Zhang, Monitoring, warning, and control of rockburst in deep metal mines, Engineering, 3(2017), No. 4, p. 538.
|
[2] |
M.F. Cai, Prediction and prevention of rockburst in metal mines–A case study of Sanshandao gold mine, J. Rock Mech. Geotech. Eng. 8(2016), No. 2, p. 204.
|
[3] |
G.Y. Zhao, M.A. Ju, L.J. Dong, X.B. Li, G.H. Chen, and C.X. Zhang, Classification of mine blasts and microseismic events using starting-up features in seismograms, Trans. Nonferrous Met. Soc. China, 25(2015), No. 10, p. 3410.
|
[4] |
T. Norgate and N. Haque, Energy and greenhouse gas impacts of mining and mineral processing operations, J. Cleaner Prod., 18(2010), No. 3, p. 266.
|
[5] |
M.I. Greenberg, J. Waksman, and J. Curtis, Silicosis: A review, Disease-a-Month, 53(2007), No. 8, p. 394.
|
[6] |
X.Z. Wang, Z.A. Jiang, S.W. Wang, and Y. Liu, Numerical simulation of distribution regularities of dust concentration during the ventilation process of coal roadway driving, J. China Coal Soc., 32(2007), No. 4, p. 386.
|
[7] |
J. Toraño, S. Torno, M. Menéndez, and M. Gent, Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour, Tunnelling Underground Space Technol., 26(2011), No. 1, p. 201.
|
[8] |
H.T. Wang, D.M. Wang, W.X. Ren, X.X. Lu, F.W. Han, and Y.K. Zhang, Application of foam to suppress rock dust in a large cross-section rock roadway driven with roadheader, Adv. Powder Technol., 24(2013), No. 1, p. 257.
|
[9] |
H.T. Wang, D.M. Wang, Y. Tang, B.T. Qin, and H.H. Xin, Experimental investigation of the performance of a novel foam generator for dust suppression in underground coal mines, Adv. Powder Technol., 25(2014), No. 3, p. 1053.
|
[10] |
X.X. Lu, D.M. Wang, C.H. Xu, C.B. Zhu, and W. Shen, Experimental investigation and field application of foam used for suppressing roadheader cutting hard rock in underground tunneling, Tunnelling Underground Space Technol., 49(2015), p. 1.
|
[11] |
S.P. Ma and Z.M. Kou, Study on mechanism of reducing dust by spray, J. China Coal Soc., 30(2005), No. 3, p. 297.
|
[12] |
E.A. Almuhanna, R.G. Maghirang, J.P. Murphy, and L.E. Erickson, Effectiveness of electrostatically charged water spray in reducing dust concentration in enclosed spaces, Trans. ASABE, 51(2008), No. 1, p. 279.
|
[13] |
J. Yang., X.K. Wu, J.G. Gao, and G.P. Li, Surface characteristics and wetting mechanism of respirable coal dust, Min. Sci. Technol., 20(2010), No. 3, p. 365.
|
[14] |
L.Z. Jin, J.M. Zhu, Z.G. Ren, and W. Wei, Research on an antifreezing dust depressor used to the road in open-pit mine, J. Univ. Sci. Technol. Beijing, 26(2004), No. 1, p. 4.
|
[15] |
L.Z. Jin, J.X. Yang, and S.N. Ou, Experimental study of wetting chemical dust-depressor, J. Saf. Environ., 7(2007), No. 6, p. 109.
|
[16] |
H.H. Tang, L.H. Zhao, W. Sun, Y.H. Hu, and H.S. Han, Surface characteristics and wettability enhancement of respirable sintering dust by nonionic surfactant, Colloids Surf. A, 509(2016), p. 323.
|
[17] |
X.F. Liu and B.S. Nie, Fractal characteristics of coal samples utilizing image analysis and gas adsorption, Fuel, 182(2016), p. 314.
|
[18] |
X.F. Liu, D.Z. Song, X.Q. He, Z.P. Wang, M.R. Zeng, and L.K. Wang, Quantitative analysis of coal nanopore characteristics using atomic force microscopy, Powder Technol., 346(2019), p. 332.
|
[19] |
X.Q. He, X.F. Liu, D.Z. Song, and B.S. Nie, Effect of microstructure on electrical property of coal surface, Appl. Surf. Sci., 483(2019), p. 713.
|
[20] |
X.F. Liu, D.Z. Song, X.Q. He, B.S. Nie, and L.K. Wang, Insight into the macromolecular structural differences between hard coal and deformed soft coal, Fuel, 245(2019), p. 188.
|
[21] |
X.F. Liu, D.Z. Song, X.Q. He, Z.P., Wang, M.R. Zeng, and K. Deng, Nanopore structure of deep-burial coals explored by AFM, Fuel, 246(2019), p. 9.
|
[22] |
V.K. Kollipara, Y.P. Chugh, and K. Mondal, Physical, mineralogical and wetting characteristics of dusts from Interior Basin coal mines, Int. J. Coal Geol., 127(2014), p. 75.
|
[23] |
C.H. Xu, D.M. Wang, H.T. Wang, H.H. Xin, L.Y. Ma, X.L. Zhu, Y. Zhang, and Q.G. Wang, Effects of chemical properties of coal dust on its wettability, Powder Technol., 318(2017), p. 33.
|
[24] |
H.T. Wang, L. Zhang, D.M. Wang, and X.X. He, Experimental investigation on the wettability of respirable coal dust based on infrared spectroscopy and contact angle analysis, Adv. Powder Technol., 28(2017), No. 12, p. 3130.
|
[25] |
G. Zhou, C.C. Xu, W.M. Cheng, Q. Zhang, and W. Nie, Effects of oxygen element and oxygen-containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment, J. Anal. Methods Chem., 2015(2015), art. No. 467242.
|
[26] |
S.S. Lu, H.F. Liu, X.L. Guo, X. Liu, and X. Gong, Determination method of particle size and distribution of coal by laser size analyzer, China Powder Sci. Technol., 16(2010), No. 4, p. 5.
|
[27] |
Å. Gustafsson, A.M. Krais, A. Gorzsás, T. Lundh, and P. Gerde, Isolation and characterization of a respirable particle fraction from residential house-dust, Environ. Res., 161(2018), p. 284.
|
[28] |
Z.G. Cao, G. Yu, Y.S. Chen, C. Liu, K. Liu, T.T. Zhang, B. Wang, S.B. Deng, and J. Huang, Mechanisms influencing the BFR distribution patterns in office dust and implications for estimating human exposure, J. Hazard. Mater., 252(2013), p. 11.
|
[29] |
C.C. Negrila, C. Logofatu, R.V. Ghita, C. Cotirlan, F. Ungureanu, A.S. Manea, and M.F. Lazarescu, Angle-resolved XPS structural investigation of GaAs surfaces, J. Cryst. Growth, 310(2008), No. 7-9, p. 1576.
|
[30] |
T. Takahagi and A. Ishitani, XPS studies by use of the digital difference spectrum technique of functional groups on the surface of carbon fiber, Carbon, 22(1984), No. 1, p. 43.
|
[31] |
Y. Taki and O. Takai, XPS structural characterization of hydrogenated amorphous carbon thin films prepared by shielded arc ion plating, Thin Solid Films, 316(1998), No. 1-2, p. 45.
|
[32] |
M. Devillers, O. Dupuis, A. Janosi, and J.P. Soumillion, Coordination compounds as precursors for laser deposition of nickel-based conducting films, Appl. Surf. Sci., 81(1994), No. 1, p. 83.
|
[33] |
J.L. Jordan, C.A. Kovac, J.F. Morar, and R.A. Pollak, High-resolution photoemission study of the interfacial reaction of Cr with polyimide and model polymers, Phys. Rev. B, 36(1987), No. 3, p. 1369.
|
[34] |
E.Z. Kurmaev, V.V. Fedorenko, V.R. Galakhov, S. Bartkowski, S. Uhlenbrock, M. Neumann, P.R. Slater, C. Greaves, and Y. Miyazaki, Analysis of oxyanion (BO33-, CO32-, SO42-, PO43-, SeO44-) substitution in Y123 compounds studied by X-ray photoelectron spectroscopy, J. Supercond., 9(1996), No. 1, p. 97.
|
[35] |
A.B. Christie, J. Lee, I. Sutherland, and J.M. Walls, An XPS study of ion-induced compositional changes with group Ⅱ and group IV compounds, Appl. Surf. Sci., 15(1983), No. 1-4, p. 224.
|
[36] |
E. Paparazzo, XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3, J. Electron Spectrosc. Relat. Phenom., 43(1987), No. 2, p. 97.
|
[37] |
M.I. Sosulnikov and Y.A. Teterin, X-ray photoelectron study of calcium, strontium, barium and their oxides, Dokl. Akad. Nauk SSSR, 317(1991), No. 2, p. 418.
|
[38] |
D. Sprenger, H. Bach, W. Meisel, and P. Gütlich, XPS study of leached glass surfaces, J. Non-Cryst. Solids, 126(1990), No. 1-2, p. 111.
|
[39] |
L.P. Buchwalter and C. Czornyj, Poly(methyl methacrylate) degradation during x-ray photoelectron spectroscopy analysis, J. Vac. Sci. Technol. A, 8(1990), No. 2, p. 781.
|
[40] |
D. Briggs and G. Beamson, Primary and secondary oxygen-induced C1s binding energy shifts in X-ray photoelectron spectroscopy of polymers, Anal. Chem., 64(1992), No. 15, p. 1729.
|