Cite this article as: |
Ming-tao Mao, Han-jie Guo, Fei Wang, and Xiao-lin Sun, Chemical composition and structural identification of primary carbides in as-cast H13 steel, Int. J. Miner. Metall. Mater., 26(2019), No. 7, pp. 839-848. https://doi.org/10.1007/s12613-019-1796-7 |
Han-jie Guo E-mail: guohanjie@ustb.edu.cn
[1] |
D.L. Cong, H. Zhou, Z.N. Ren, H.F. Zhang, L.Q. Ren, C. Meng, and C.W. Wang, Thermal fatigue resistance of hot work die steel repaired by partial laser surface remelting and alloying process, Opt. Lasers Eng., 54(2014), p. 55.
|
[2] |
Y.G. Zhao, Y.H. Liang, W. Zhou, Q.D. Qin, and Q.C. Jiang, Effect of a current pulse on the thermal fatigue behavior of cast hot work die steel, ISIJ Int., 45(2005), No. 3, p. 410.
|
[3] |
J. Zhou, D.S. Ma, H.X. Chi, Z.Z. Chen, and X.Y. Li, Microstructure and properties of hot working die steel H13MOD, J. Iron Steel Res. Int., 20(2013), No. 9, p. 117.
|
[4] |
X.L. Sun, H.J. Guo, X.C. Chen, A.G. Ning, G.W. Du, and C.B. Shi, Formation mechanism of primary carbide in H13 steel during electroslag remelting process, Iron Steel, 49(2014), No. 5, p. 68.
|
[5] |
Y. Xie, G.G. Cheng, L. Chen, Y.D. Zhang, Q.Z. Yan, Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13+ Nb tool steel, Int. J. Miner. Metall. Mater., 23(2016), No. 11, p. 1264.
|
[6] |
K. Ozaki, Effect of the distribution of primary carbide on fatigue strength of cold work die steels, DENKI-SEIKO, 76(2005), No. 4, p. 249.
|
[7] |
L.L. Mishnaevsky Jr., N. Lippmann, and S. Schmauder, Micromechanisms and modelling of crack initiation and growth in tool steels:Role of primary carbides, Z. Metallkd., 94(2003), No. 6, p. 676.
|
[8] |
K. Wieczerzak, P. Bała, M. Stępień, G. Cios, and T. KozieŁ, The characterization of cast Fe-Cr-C alloy, Arch. Metall. Mater., 60(2015), No. 2, p. 779.
|
[9] |
M. Venkatraman and J.P. Neumann, The C-Cr (carbon-chromium) system, Bull. Alloy Phase Diagrams, 11(1990), No. 2, p. 152.
|
[10] |
M. Hillert and C. Qiu, A reassessment of the Fe-Cr-Mo-C system, J. Phase Equilib., 13(1992), No. 5, p. 512.
|
[11] |
A. Kroupa, J. Havránková, M. Svoboda, M. Coufalová, and J. Vřešt'ál, Phase diagram in the iron-rich corner of the Fe-Cr-Mo-V-C system below 1000 K, J. Phase Equilib., 22(2001), No. 3, p. 312.
|
[12] |
Y.J. Shi, X.C. Wu, J.W. Li, and N. Min, Tempering stability of Fe-Cr-Mo-W-V hot forging die steels, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1145.
|
[13] |
Ö.N. Doğan, J.A. Hawk, and G. Laird Ⅱ, Solidification structure and abrasion resistance of high chromium white irons, Metall. Mater. Trans. A, 28(1997), No. 6, p, 1315.
|
[14] |
C.P. Tabrett, I.R. Sare, and M.R. Ghomashchi, Microstructure-property relationships in high chromium white iron alloys, Int. Mater. Rev., 41(1996), No. 2, p. 59.
|
[15] |
A. Inoue, Y. Harakawa, M. Oguchi, and T. Masumoto, Metastable MC phase in melt-quenched Fe-C-V and Fe-C-V-(Cr or Mo) alloys-mechanical properties and powder-forming tendency by comminution, J. Mater. Sci., 21(1986), No. 4, p. 1310.
|
[16] |
Y. Xie, G.G. Cheng, L. Chen, Y.D, Zhang, and Q.Z. Yan, Characteristics and generating mechanism of large precipitates in Nb-Ti-microalloyed H13 tool steel, ISIJ Int., 56(2016), No. 6, p. 995.
|
[17] |
Y. Xie, G.G. Cheng, X.L. Meng, L. Chen, and Y.D. Zhang, Precipitation behavior of primary precipitates in Ti-microalloyed H13 tool steel, ISIJ Int., 56(2016), No. 11, p. 1996.
|
[18] |
X.L. Sun, F. Wang, X.C. Chen, M.T. Mao, and H.J. Guo, Study on decomposition of primary carbonitrides in H13 steel under high temperature, Chin. J. Eng., 39(2017), No. 5, p. 721.
|
[19] |
X.L. Sun, F. Wang, X.C. Chen, H.J. Guo, and M.T. Mao, Study on primary carbonitrides in H13 steel based on the two-sublattice model, Chin. J. Eng., 39(2017), No. 1, p. 61.
|
[20] |
W.W. Song, Y.A. Min, and X.C. Wu, Study on carbides and their evolution in H13 hot work steel, Trans. Mater. Heat Treat., 30(2009), No. 5, p. 122.
|
[21] |
Y.M. Won and B.G. Thomas, Simple model of microsegregation during solidification of steels, Metall. Mater. Trans. A, 32(2001), No. 7, p. 1755.
|
[22] |
V. Raghavan, C-Cr-Fe-Mo-V (carbon-chromium-iron-molybdenum-vanadium), J. Phase Equilib. Diffus., 28(2007), No. 3, p. 286.
|
[23] |
A.G. Ning, Investigation on Nanoscale Precipitates in Hot-work Die Steel and Comprehensive Strengthening Mechanism of Steel[Dissertation], University of Science and Technology Beijing, Beijing, 2015.
|
[24] |
J. Miettinen, Mathematical simulation of interdendritic solidification of low-alloyed and stainless steels, Metall. Trans. A, 23(1992), No. 4, p. 1155.
|
[25] |
T.W. Clyne and W. Kurz, Solute redistribution during solidification with rapid solid state diffusion, Metall. Trans. A, 12(1981), No. 6, p. 965.
|
[26] |
J.X. Chen, Databook Commonly Used in Steelmaking, Metallurgical Industry Press, Beijing, 2010.
|