Nitika Kundan, Biswajit Parida, Anup Kumar Keshri, and Prathvi Raj Soni, Synthesis and characterization of the nanostructured solid solution with extended solubility of graphite in nickel by mechanical alloying, Int. J. Miner. Metall. Mater., 26(2019), No. 8, pp.1031-1037. https://dx.doi.org/10.1007/s12613-019-1816-7
Cite this article as: Nitika Kundan, Biswajit Parida, Anup Kumar Keshri, and Prathvi Raj Soni, Synthesis and characterization of the nanostructured solid solution with extended solubility of graphite in nickel by mechanical alloying, Int. J. Miner. Metall. Mater., 26(2019), No. 8, pp.1031-1037. https://dx.doi.org/10.1007/s12613-019-1816-7

Synthesis and characterization of the nanostructured solid solution with extended solubility of graphite in nickel by mechanical alloying

  • In the present work, mechanical alloying of a powder mixture of nickel and graphite (up to 15wt%) was carried out in an attrition mill under a nitrogen atmosphere. The as-milled powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The 15wt% graphite dissolved into the nickel (exceeding the negligible solid solubility in the nickel-carbon system), thereby forming a supersaturated solid solution of graphite in a nickel matrix. The dissolved graphite occupied interstitial positions along the dislocation edges and at the grain-boundary regions. A three-step graphite dissolution mechanism has been proposed. The associated changes in the nickel lattice, such as changes in the crystallite size (62 to 43 nm), lattice strain (0.12% to 0.3%), and lattice parameter (0.3533 to 0.3586 nm), which led to the formation of the supersaturated solid solution, were also evaluated and discussed.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return