Cite this article as: |
Nitika Kundan, Biswajit Parida, Anup Kumar Keshri, and Prathvi Raj Soni, Synthesis and characterization of the nanostructured solid solution with extended solubility of graphite in nickel by mechanical alloying, Int. J. Miner. Metall. Mater., 26(2019), No. 8, pp. 1031-1037. https://doi.org/10.1007/s12613-019-1816-7 |
Prathvi Raj Soni E-mail: prsoni.meta@mnit.ac.in
[1] |
T. Tanaka, S. Nasu, K.N. Ishihara, and P.H. Shingu, Mechanical alloying of the high carbon Fe-C system, J. Less Common Met., 171(1991), No. 2, p. 237.
|
[2] |
N.Q. Wu, J.M. Wu, G.X. Wang, and Z.Z. Li, Amorphization in the Al-C system by mechanical alloying, J. Alloys Compd., 260(1997), No. 1-2, p. 121.
|
[3] |
H. Arik, Production and characterization of in situ Al4C3 reinforced aluminum-based composite produced by mechanical alloying technique, Mater. Des., 25(2004), No. 1, p. 31.
|
[4] |
H.T. Son, T.S. Kim, C. Suryanarayana, and B.S. Chun, Homogeneous dispersion of graphite in a 6061 aluminum alloy by ball milling, Mater. Sci. Eng. A, 348(2003), No. 1-2, p. 163.
|
[5] |
X.R. Liu, Y.B. Liu, X. Ran, J. An, and Z.Y. Cao, Fabrication of the supersaturated solid solution of carbon in copper by mechanical alloying, Mater. Charact., 58(2007), No. 6, p. 504.
|
[6] |
K.N. Ishihara, F. Kubo, E. Yamasue, and H. Okumura, Formation of supersaturated Fe-Li solid solution by mechanical alloying, Rev. Adv. Mater. Sci., 18(2008), No. 3, p. 284.
|
[7] |
B. Ghosh, H. Dutta, and S.K. Pradhan, Microstructure characterization of nanocrystalline Ni3C synthesized by high-energy ball milling, J. Alloys Compd., 479(2009), No. 1-2, p. 193.
|
[8] |
R.S. Lei, M.P. Wang, H.P. Wang, and S.Q. Xu, New insights on the formation of supersaturated Cu-Nb solid solution prepared by mechanical alloying, Mater. Charact., 118(2016), p. 324.
|
[9] |
Z.Y. Zhong, Z.T. Xiong, L.F. Sun, J.Z. Luo, P. Chen, X. Wu, J. Lin, and K.L. Tan, Nanosized nickel (or cobalt)/graphite composites for hydrogen storage, J. Phys. Chem. B, 106(2002), No. 37, p. 9507.
|
[10] |
J.L. Li and D.S. Xiong, Tribological properties of nickel-based self-lubricating composite at elevated temperature and counterface material selection, Wear, 265(2008), No. 3-4, p. 533.
|
[11] |
I.M. Afanasov, O.N. Shornikova, V.V. Avdeev, O.I. Lebedev, G. Van Tendeloo, and A.T. Matveev, Expanded graphite as a support for Ni/carbon composites, Carbon, 47(2009), No. 2, p. 513.
|
[12] |
C.M. Mani, M. Braun, V. Molinari, M. Antonietti, and N. Fechler, A high-throughput composite catalyst based on nickel carbon cubes for the hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran, ChemCatChem, 9(2017), No. 17, p. 3388.
|
[13] |
M. Mehrabi, P. Parvin, A. Reyhani, and S.Z. Mortazavi, Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods, Mater. Res. Express, 4(2017), No. 9, art. No. 095030.
|
[14] |
R. Akbarzadeh and H. Dehghani, Intensified electrochemical hydrogen storage capacity of multi-walled carbon nanotubes supported with Ni nanoparticles, J. Solid State Electrochem., 22(2018), No. 2, p. 395.
|
[15] |
N. Chawla and K.K. Chawla, Metal Matrix Composite, 2nd ed., Springer New York Heidelberg Dordreche, London, 2013.
|
[16] |
D. Nunes, V. Livramento, R. Mateus, J.B. Correia, L.C. Alves, and M. Vilarigues, Mechanical synthesis of copper-carbon nanocomposites:Structural changes, strengthening and thermal stabilization, Mater. Sci. Eng. A, 528(2011), No. 29-30, p. 8610.
|
[17] |
C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No. 1-2, p. 1.
|
[18] |
P.R. Soni, Mechanical Alloying:Fundamentals & Applications, 1st ed., Cambridge International Science Publishing, Cambridge, 2000.
|
[19] |
C.C. Koch, The synthesis and structure of nanocrystalline materials produced by mechanical attrition:A review, Nanostruct. Mater., 2(1993), No. 2, p. 109.
|
[20] |
B. Bokhonov and M. Korchagin, The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel, J. Alloys Compd., 333(2002), No. 1-2, p. 308.
|
[21] |
G.L. Caër, E.B. Grosse, A. Pianelli, E. Bouzy, and P. Matteazzi, Mechanically driven syntheses of carbides and silcides, J. Mater. Sci., 25(1990), No. 11, p. 4726.
|
[22] |
T. Tanaka, K.N. Ishihara, and P.H. Shingu, Formation of metastable phases of Ni-C, Metall. Trans. A, 23(1992), No. 9, p. 2431.
|
[23] |
T. Nickchi, M. Ghorbani, A. Alfantazi, and Z. Farhat, Fabrication of low friction bronze-graphite nano-composite coatings, Mater. Des., 32(2011), No. 6, p. 3548.
|
[24] |
T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, ASM International, Ohio, 1990, p. 561.
|
[25] |
Badzian and T. Badzian, Growth of diamond and nickel carbide crystals in the Ni-C-H system, Diamond Relat. Mater., 5(1996), No. 1, p. 93.
|
[26] |
B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, New Jersy, 2001.
|
[27] |
E. Botcharova, M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow, U. Martin, and L. Schultza, Supersaturated solid solution of niobium in copper by mechanical alloying, J. Alloys Compd., 351(2003), No. 1-2, p. 119.
|
[28] |
Goyal and P.R. Soni, Functionally graded nanocrystalline silicon powders by mechanical alloying, Mater. Lett., 214(2018), p. 111.
|
[29] |
M.C. Cadeville, C. Lerner, and J.M. Friedt, Electronic structure of interstitial carbon in ferromagnetic transition metals prepared by splat-quenching, Physica B+C, 86-88(1977), p. 432.
|