Levent Kartal and Servet Timur, Direct electrochemical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 8, pp. 992-998. https://doi.org/10.1007/s12613-019-1821-x
Cite this article as:
Levent Kartal and Servet Timur, Direct electrochemical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 8, pp. 992-998. https://doi.org/10.1007/s12613-019-1821-x
Research Article

Direct electrochemical reduction of copper sulfide in molten borax

+ Author Affiliations
  • Corresponding author:

    Levent Kartal    E-mail: leventkartal@hitit.edu.tr

  • Received: 30 October 2018Revised: 19 January 2019Accepted: 21 January 2019
  • In this study, for the first time, direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte. The effects of current density (100-800 mA/cm2) and electrolysis time (15-90 min) on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃. The copper production yield reached 98.09% after 90 min of electrolysis at a current density of 600 mA/cm2. Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density, at which the highest current efficiency (41%) was obtained. The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides, which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.
  • loading
  • [1]
    F. Habashi, Handbook of Extractive Metallurgy, Wiley-VCH, Weinheim, 1998, p. 491.
    [2]
    F. Habashi, Pollution problems in the metallurgical industry:A review, J. Min. Environ., 2(2011), No. 1, p. 17.
    [3]
    G.M. Li, D.H. Wang, X.B. Jin, and G.Z. Chen, Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission, Electrochem. Commun., 9(2007), No. 8, p. 1951.
    [4]
    A. Vignes, Extractive Metallurgy 3:Processing Operations and Routes, John Wiley & Sons Inc., New Jersey, 2013, p. 265.
    [5]
    A. Vignes, Extractive Metallurgy 2:Metallurgical Reaction Processe, John Wiley & Sons Inc., New Jersey 2013, p. 87.
    [6]
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361.
    [7]
    S.L. Wang, W. Wang, S.C. Li, and S.H. Cao, Cathodic behavior of molten CaCl2-CaO and CaCl2-NaCl-CaO, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 791.
    [8]
    Z.Q. Li, L.Y. Ru, C.G. Bai, N. Zhang, and H.H. Wang, Effect of sintering temperature on the electrolysis of TiO2, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 636.
    [9]
    Y. Liu, Y.A. Zhang, W. Wang, D.S. Li, and J.Y. Ma, Microstructure and electrolysis behavior of self-healing Cu-Ni-Fe composite inert anodes for aluminum electrowinning, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1208.
    [10]
    H.P. Gao, M.S. Tan, L.B. Rong, Z.Y. Wang, J.J. Peng, X.B. Jin, and G.Z. Chen, Preparation of Mo nanopowders through electroreduction of solid MoS2 in molten KCl-NaCl, Phys. Chem. Chem. Phys., 16(2014), No. 36, p. 19514.
    [11]
    Y. Xiao, D.W. van der Plas, J. Bohte, S.C. Lans, A. van Sandwijk, and M.A. Reuter, Electrowinning Al from Al2S3 in molten salt, J. Electrochem. Soc., 154(2007), No. 6, p. 334.
    [12]
    T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng, and G.Z. Chen, Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl, Electrochem. Commun., 13(2011), No. 12, p. 1492.
    [13]
    N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki, Reduction of TiS2 by OS process in CaCl2 melt, ECS Trans., 75(2016), No. 15, p. 507.
    [14]
    T. Matsuzaki, S. Natsui, T. Kikuchi. and R.O. Suzuki, Electrolytic reduction of V3S4 in molten CaCl2, Mater. Trans., 58(2017), No. 3, p. 371.
    [15]
    H.Y. Yin, B. Chung, and D.R. Sadoway, Electrolysis of a molten semiconductor, Nat. Commun., 7(2016), art. No. 12584.
    [16]
    X.L. Ge, X.D. Wang, and S. Seetharaman, Copper extraction from copper ore by electro-reduction in molten CaCl2-NaCl, Electrochim. Acta, 54(2009), No. 18, p. 4397.
    [17]
    X.L. Ge and S. Seetharaman, The salt extraction process-a novel route for metal extraction Part 2-Cu/Fe extraction from copper oxide and sulphides, Miner. Process. Extr. Metall., 119(2010), No. 2, p. 93.
    [18]
    S. Sokhanvaran, S.K. Lee, G. Lambotte, and A. Allanore, Electrochemistry of molten sulfides:copper extraction from BaS-Cu2S, J. Electrochem. Soc., 163(2016), No. 3, p. 115.
    [19]
    S.K. Sahu, B. Chmielowiec, and A. Allanore, Electrolytic extraction of copper, molybdenum and rhenium from molten sulfide electrolyte, Electrochim. Acta, 243(2017), p. 382.
    [20]
    M.S. Tan, R. He, Y.T. Yuan, Z.Y. Wang, and X.B. Jin, Electrochemical sulfur removal from chalcopyrite in molten NaCl-KCl, Electrochim. Acta, 213(2016), p. 148.
    [21]
    K.S. Mohandas and D.J. Fray, Electrochemical deoxidation of solid zirconium dioxide in molten calcium chloride, Metall. Mater. Trans. B, 40(2009), No. 5, p. 685.
    [22]
    S.L. Wang, S.C. Li, L.F. Wan, and C.H. Wang, Electro-deoxidation of V2O3 in molten CaCl2-NaCl-CaO, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 212.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(747) PDF Downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return