Mohammed A. Taha, Rasha A. Youness, and M. F. Zawrah, Review on nanocomposites fabricated by mechanical alloying, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1047-1058. https://doi.org/10.1007/s12613-019-1827-4
Cite this article as:
Mohammed A. Taha, Rasha A. Youness, and M. F. Zawrah, Review on nanocomposites fabricated by mechanical alloying, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1047-1058. https://doi.org/10.1007/s12613-019-1827-4
Review

Review on nanocomposites fabricated by mechanical alloying

+ Author Affiliations
  • Corresponding author:

    M. F. Zawrah    E-mail: mzawrah@hotmail.com

  • Received: 7 November 2018Revised: 22 February 2019Accepted: 27 February 2019
  • Composites are composed of multiphase materials, where each phase has specific properties that differ from those of the other phases which can effect on the whole properties of composite. Nanocomposites are class of materials that contain at least one phase in the nanometric size range and can be produced by any suitable technique for preparing nanomaterials. Composites are an interesting class of materials that have recently been used in numerous applications, including structural, biomedical, electronics, and environmental applications. In composites, reinforcements might be fibers, particulates, or whiskers. Mechanical alloying (MA) is a promising technique for producing nanocomposite materials that are difficult or impossible to prepare via conventional techniques. In this review, we provide an overview of nanocomposites prepared by the MA process. The mechanism of milling and other milling parameters are overviewed, and insights into sintering categories and parameters are also presented.

  • loading
  • [1]
    A. Iftekhar, Standard Handbook of Biomedical Engineering and Design, Chapter 12:Biomedical Composites, McGraw-Hill Companies, New York, 2004, p. 109.
    [2]
    W.D. Callister and D.G. Rethwisch, Materials Science and Engineering:An Introduction, Wiley, New York, 2003, p. 197.
    [3]
    F.L. Matthews and R.D. Rawlings, Composite Materials:Engineering and Science, Woodhead Publishing, 1999, p. 72.
    [4]
    E.T. Thostenson, C. Li, and T.W. Chou, Nanocomposites in context, Compos. Sci. Technol., 65(2005), No. 3-4, p. 491.
    [5]
    K. Chrissafis, G. Antoniadis, K.M. Paraskevopoulos, A. Vassiliou, and D.N. Bikiaris, Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(e-caprolactone) nanocomposites, Compos. Sci. Technol., 67(2007), No. 10, p. 2165.
    [6]
    P.R. Supronowicz, P.M. Ajayan, K.R. Ullmann, B.P. Arulanandam, D.W. Metzger, and R. Bizios, Novel current-conducting composite substrates for exposing osteoclasts to alternating current stimulation, J. Biomed. Mater. Res., 59(2002), No. 3, p. 499.
    [7]
    C. Stephan, T.P. Nguyen, M.L. De La Chapelle, S. Lefrant, C. Journet, and P. Bernier, Characterization of single walled carbon nanotubes-PMMA composites, Synth. Met., 108(2000), No. 2 p. 139.
    [8]
    R.A. Youness, M.A. Taha, and M.A. Ibrahim, Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites, J. Mol. Struct., 1150(2017), p. 188.
    [9]
    K. Niespodziana, K. Jurczyk, J. Jakubowicz, and M. Jurczyk, Fabrication and properties of titanium-hydroxyapatite nanocomposites, Mater. Chem. Phys., 123(2010), No. 1, p. 160.
    [10]
    J.G. Miranda-Hernández, S. Moreno-Guerrero, A.B. Soto-Guzmán, and E. Rocha-Rangel, Production and characterization of Al2O3-Cu composite materials, J. Ceram. Process. Res., 7(2006), No. 4, p. 311.
    [11]
    C. Suryanarayana and N. Al-Aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci., 58(2013), No. 4, p. 383.
    [12]
    A.W. Weeber, H. Bakker, and F.R. de Boer, The preparation of amorphous Ni-Zr powder by grinding the crystalline alloy, EPL, 2(1986), No. 6, p. 445.
    [13]
    G. Jangg, F. Kuttner, and G. Korb, Preparation and properties of dispersion hardened aluminum, Aluminum, 51(1975), p. 641.
    [14]
    E. Arzt and L. Schultz, New materials by mechanical alloying techniques, Mater. Manuf. Process., 6(1991), No.4, p. 733.
    [15]
    C. Suryanarayana, Mechanical Alloying and Milling, New York, Marcel Dekker, 2004.
    [16]
    C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No.1-2, p. 1.
    [17]
    M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone, Cryomilling of Nano-phase Dispersion Strengthened Aluminum,[in] L.E. McCandlsih, D.E. Polk, R.W. Siegel, and B.H. Kear, eds., Multicomponent Ultrafine Microstructures, Vol. 132, Pittsburgh (PA), Mater. Res Soc., 1988, p. 132.
    [18]
    G. Heinicke, Tribochemistry, Munchen, Hanser Publishers, 1984, p. 119.
    [19]
    R.A. Youness, M.A. Taha, H. Elhaes, and M. Ibrahim, Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis, Mater. Chem. Phys., 190(2017), p. 209.
    [20]
    R.A. Youness, M.A. Taha, H. Elhaes, and M. Ibrahim, Preparation, fourier transform infrared characterization and mechanical properties of hydroxyapatite nanopowders, J. Comput. Theor. Nanosci., 14(2017), No. 5, p. 2409.
    [21]
    J.S. Benjamin, Mechanical alloying, Sci. Am., 234(1976), No. 5, p. 40.
    [22]
    J.S. Benjamin and T.E. Volin, The mechanism of mechanical alloying, Metall. Trans., 5(1974), No. 8, p. 1929.
    [23]
    P.S. Gilman and J.S. Benjamin, Mechanical alloying, Annu. Rev. Mater. Sci., 13(1983), No. 1, p. 279.
    [24]
    M.F. Zawrah and L. Shaw, Microstructure and hardness of nanostructured Al-Fe-Cr-Ti alloys through mechanical alloying, Mater. Sci. Eng. A, 355(2003), No. 1-2, p. 37.
    [25]
    L. Shaw, J. Villegas, H. Luo, M.F. Zawrah, and D. Miracle, Effect of process controlling agents on mechanical alloying of nanostructured aluminum alloys, Metall. Mater. Trans. A, 34(2003), No.1, p. 159.
    [26]
    J.S. Benjamin and T.E. Volin, The mechanism of mechanical alloying, Metall. Trans., 5(1974), No. 8, p. 1929.
    [27]
    M.F. Zawrah, H. Abdel-kader, and N.E. Elbaly, Fabrication of Al2O3-20 vol.% Al nanocomposite powders using high energy milling and their sinterability, Mater. Res. Bull., 47(2012), No. 3, p. 655.
    [28]
    J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders, Mater. Sci. Eng. A, 342(2003), No. 1-2, p. 131.
    [29]
    R.R. Enrique, A.R.Z. José, E.V. Sergio, C.S. Brianda, E.G. Ivanovich, and M.S. Roberto, Effect of particle size and titanium content on the fracture toughness of particle-ceramic composites, Mater. Today:Proceedings, 3(2016), No. 2, p. 249.
    [30]
    M.F. Zawrah, A.A. El Kheshen, and A.A. El-Magraby, Effect of SiC-graphite-Al-metal addition on low-and ultra-low cement bauxite castables, Ceram. Int., 38(2012), No. 5, p. 3857.
    [31]
    S. Sampath, H. Herman, N. Shimoda, and T. Saito, Thermal spray processing of FGMs, MRS Bull., 20(1995), No. 1, p. 27.
    [32]
    R.M. Davis, B. McDermott, and C.C. Koch, Mechanical alloying of brittle materials, Metall. Trans. A, 19(1988), No. 12, p. 2867.
    [33]
    S. Shrivastava, N. Jadon, and R. Jain, Next-generation polymer nanocomposite-based electrochemical sensors and biosensors:A review, Trends Anal. Chem., 82(2016), p. 55.
    [34]
    I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J.M. Kenny, Biodegradable polymer matrix nanocomposites for tissue engineering:a review, Polym. Degrad. Stab., 95(2010), No. 11, p. 2126.
    [35]
    K. Rezwan, Q.Z. Chen, J.J. Blaker, and A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27(2006), No. 18, p. 3413.
    [36]
    L.S. Nair and C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32(2007), No. 8-9, p. 762.
    [37]
    M. Dziadek, E. Stodolak-Zych, and K. Cholewa-Kowalska, Biodegradable ceramic-polymer composites for biomedical applications:A review, Mater. Sci. Eng. C, 71(2017), p. 1175.
    [38]
    M.A. Taha and M.F. Zawrah, Effect of nano ZrO2 on strengthening and electrical properties of Cu-Matrix nanocomposits prepared by mechanical alloying, Ceram. Int., 43(2017), No. 15, p. 12698.
    [39]
    M.A. Taha and M.F. Zawrah, Mechanical alloying and sintering of Ni/10wt% Al2O3 nanocomposites and its characterization, Silicon, 10(2018), No. 4, p. 1351.
    [40]
    M.F. Zawrah, M.A. Taha, F. Saadallah, A.G. Mostafa, M.Y. Hassan, and M. Nasr, Effect of nano ZrO2 on the properties of Al-Al2O3 nanocomposites prepared by mechanical alloying, Silicon, 10(2018), No. 4, p. 1523.
    [41]
    M.F. Zawrah, M.A. Taha, and H.A. Mostafa, In-situ formation of Al2O3/Al core-shell from waste material:production of porous composite improved by graphene, Ceram. Int., 44(2018), No. 9, p. 10693.
    [42]
    E.M. Hamzawy, A.A. El-Kheshen, and M.F. Zawrah, Densification and properties of glass/cordierite composites, Ceram. Int., 31(2005), No. 3, p. 383.
    [43]
    M.F. Zawrah and E.M.A. Hamzawy, Effect of cristobalite formation on sinterability, microstructure and properties of glass-alumina composites, Ceram. Int., 28(2002), No. 2, p. 123.
    [44]
    A.A. El-Kheshen and M.F. Zawrah, Sinterability, microstructure and properties of glass/ceramics composites, Ceram. Int., 29(2003), No. 3, p. 251.
    [45]
    M.M.S. Wahsh, R.M. Khattab, and M.F. Zawrah, Sintering and technological properties of alumina/zirconia/nano TiO2 ceramic composites, Mater. Res. Bull., 48(2013), No. 4, p. 1411.
    [46]
    M.F. Zawrah, R.M. Khattab, E.M Saad, and R.A. Gado, Effect of surfactant types and their concentration on the structural characteristics of nanoclay, Spectrochim. Acta Part A, 122(2014), p. 616.
    [47]
    R.M. Khattab, H.A. Dadr, and M.F. Zawrah, Effect of processing techniques on properties of porous TiO2 and TiO2/hydroxyapatite composites, Ceram. Int., 44(2018) No. 7, p. 8643.
    [48]
    R.M. Khattab, A.M. El-Rafei, and M.F. Zawrah, In-situ formation of sintered cordierite-mullite nano-micro composites by utilizing of waste silica fume, Mater. Res. Bull., 47(2012), No. 9, p. 2662.
    [49]
    M.F. Zawrah, Effect of Cr2O3 on the properties of spinel/mullite composites, Brit. Ceram. Trans., 102(2003), No. 3, p. 114.
    [50]
    M.F. Zawrah and N.M. Khalil, Processing, sintering and properties of CaZrO3/MgO and ZrO2/MgO composites, InterCeram, 57(2008), No. 2, p. S/1.
    [51]
    M. Awaad, M.F. Zawrah, and N.M. Khalil, In situ formation of zirconia-alumina-spinel-mullite ceramic composites, Ceram. Int., 34(2008), No. 2, p. 429.
    [52]
    A.A. El-kheshen, M.F. Zawrah, and M. Awaad, Densification, phase composition and properties of borosilicate glass composites containing nano-alumina and titania, J. Mater. Sci.:Mater. Electron., 20(2009), No. 7, p. 637.
    [53]
    A. Ficai, E. Andronescu, G. Voicu, C. Ghitulica, B.S. Vasile, D. Ficai, and V. Trandafir, Self assembled collagen/hydroxyapatite composite materials, Chem. Eng. J., 160(2010), No. 2, p. 794.
    [54]
    L. Zhang, P. Tang, M. Xu, W. Zhang, W. Chai, and Y. Wang, Effects of crystalline phase on the biological properties of collagen-hydroxyapatite composites, Acta Biomater., 6(2010), No. 6, p. 2189.
    [55]
    J. Yin and B.L. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci., 479(2015), p. 256.
    [56]
    X.C. Wang, J. Chang, and C.T. Wu, Bioactive inorganic/organic nanocomposites for wound healing, Appl. Mater. Today, 11(2018), p. 308.
    [57]
    A. Smirnov and J.F. Bartolomé, Microstructure and mechanical properties of ZrO2 ceramics toughened by 5-20vol% Ta metallic particles fabricated by pressureless sintering, Ceram. Int., 40(2014), No. 1, p. 1829.
    [58]
    A. Zima, Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength, Spectrochim. Acta, 193(2018), p. 175.
    [59]
    A.G. Basutkar and A. Kolekar, A review on properties and applications of ceramic matrix composites, IJRSI, (2015), Ⅱ No. p. 28. Ⅻ
    [60]
    J. Silvestre, N. Silvestre, and J. de Brito, An overview on the improvement of mechanical properties of ceramics nanocomposites, J. Nanomater., 2015(2015), p. 3.
    [61]
    C. Pecharromán, J.I. Beltrán, F. Esteban-Betegón, S. López-Esteban, J.F. Bartolomé, M.C. Muňoz, and J.S. Moya, Zirconia/nickel interfaces in micro-and nanocomposites, Z. Metallkd., 96(2005), No. 5, p. 507.
    [62]
    J.S. Moya, S. López-Esteban, C. Pecharromán, J.F. Bartolomé, and R. Torrecillas, Mechanically stable monoclinic zirconia-nickel composite, J. Am. Ceram. Soc., 85(2002), No. 8, p. 2119.
    [63]
    Y.G. Jung, S. Choi, C.S. Oh, and U.G. Paik, Residual stress and thermal properties of zirconia/metal (nickel and stainless steel 304) functionally graded materials fabricated by hot pressing, J. Mater. Sci., 32(1997), No.14, p. 3841.
    [64]
    M.F. Zawrah, Synthesis and characterization of WC-Co nanocomposites by novel chemical method, Ceram. Int., 33(2007), No. 2, p. 155.
    [65]
    M.F. Zawrah, M.A. Zayed, and M.R.K. Ali, Synthesis and characterization of SiC and SiC/Si3N4 composite nano powders from waste material, J. Hazard. Mater., 227-228(2012), p. 250.
    [66]
    J. Suri, L.L. Shaw, and M.F. Zawrah, Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume, Int. J. Appl. Ceram. Technol., 9(2011), No. 2, p. 291.
    [67]
    J. Suri, L.L Shaw, and M.F. Zawrah, Synthesis of carbon-free Si3N4/SiC nanopowders using silica fume, Ceram. Int., 37(2011), No. 8, p. 3477.
    [68]
    M.F. Zawrah, R.M. Khattab, A.A. El-Kheshen, and E. El Fadaly, Sintering and properties of borosilicate glass/Li-Na-K-feldspar composites for electronic applications, Ceram. Int., 43(2017), No. 17, p. 15068.
    [69]
    M.F.M. Zawrah and A.A. El-Kheshen, Characterization of borosilicate glass matrix composites reinforced with SiC or ZrO2, Brit. Ceram. Trans., 103(2004), No. 4, p. 165.
    [70]
    M.F. Zawrah and M.H. Aly, In-situ formation of Al2O3-SiC-mullite from Al matrix composites, Ceram. Int., 32(2006), No. 1, p. 21.
    [71]
    Y. Yamada, A. Kawasaki, M. Taya, and R. Watanabe, Effect of debonding at the phase interface on Young's modulus in sintered PSZ/stainless steel composites, Mater. Trans., JIM, 35(1994), No. 11, p. 814.
    [72]
    M. Nawa, K. Yamazaki, T. Sekino, and K. Niihara, Microstructure and mechanical properties of 3Y-TZP/Mo nanocomposites-processing a novel interpenetrated intragranular microstructure, J. Mater. Sci., 31(1996), No. 11, p. 2849.
    [73]
    S. López-Esteban, J.F. Bartolomé, C. Pecharromán, and J.S. Moya, Zirconia/stainless-steel continuous functionally graded material, J. Eur. Ceram. Soc., 22(2002), No. 16, p. 2799.
    [74]
    S. López-Esteban, J.F. Bartolomé, J.S. Moya, and T. Tanimoto, Mechanical performance of 3Y-TZP/Ni composites:tensile, bending, and uniaxial fatigue tests, J. Mater. Res., 17(2002), No. 7, p. 1592.
    [75]
    M.A. Taha, G.M. Elkomy, H. Abo Mostafa, and E.S. Gouda, Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al-4.5 wt.% Cu nanocomposites prepared by mechanical alloying, Mater. Chem. Phys., 206(2018), p. 116.
    [76]
    M.A. Taha, A.H. Nassar, and M.F. Zawrah, Improvement of wettability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying, Ceram. Int., 43(2017), No. 4, p. 3576.
    [77]
    M.F. Zawrah, R.A. Essawy, H.A. Zayed, A.H.A. Fattah, and M.A. Taha, Mechanical alloying, sintering and characterization of Al2O3-20wt%-Cu nanocomposite, Ceram. Int., 40(2014), No. 1, p. 31.
    [78]
    K. Honjo, Fracture toughness of PAN-based carbon fibres estimated from strength-mirror size relation, Carbon, 41(2003), No. 5, p. 979.
    [79]
    Y.C. Yang, C. Ramirez, X. Wang, Z.X. Guo, A. Tokranov, R.Q. Zhou, I. Szlufarska, J. Lou, and B.W. Sheldon, Impact on carbon nanotube defects on fracture mechanisms in ceramic nanocomposites, Carbon, 115(2017), p. 402.
    [80]
    N Koichi, New design concept of structural ceramics/ceramic nanocomposites, J. Ceram. Soc. Jpn., 99(1991), p. 974.
    [81]
    Y.K. Jeong and K. Niihara, Microstructure and properties of alumina-silicon carbide nanocomposites fabricated by pressureless sintering and post hot-isostatic pressing, Trans. Nonferrous Met. Soc., 21(2011), p. 1.
    [82]
    M. Yoshimura, T. Ohji, M. Sando, Y.H. Choa, T. Sekino, and K. Niihara, Oxidation-induced strengthening and toughening behavior in micro-and nano-composites of Y2O3/SiC system, Mater. Lett., 35(1998), No. 3-4, p. 139.
    [83]
    J.F. Yang, T. Ohii, T. Sekino, C.L. Li, and K. Niihara, Phase transformation, microstructure and mechanical properties of Si3N4/SiC composite, J. Eur. Ceram. Soc., 21(2001), No. 12, p. 2179.
    [84]
    P. Palmero, Structural ceramic nanocomposites:A review of properties and powders' synthesis methods, Nanomaterials, 5(2015), No. 2, p. 656.
    [85]
    J. Venkatesan and S.K. Kim, Nano-hydroxyapatite composite biomaterials for bone tissue engineering-a review, J. Biomed. Nanotechnol., 10(2014), No. 10, p. 3124.
    [86]
    H.S. Mansur and H.S. Costa, Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications, Chem. Eng. J., 137(2008), No. 1, p. 72.
    [87]
    J.L. Liu and X.G. Miao, Sol-gel derived bioglass as a coating material for porous alumina scaffolds, Ceram. Int., 30(2004), No. 7, p. 1781.
    [88]
    M. Haghshenas, Mechanical characteristics of biodegradable magnesium matrix composites:A review, J. Magnesium Alloys, 5(2017), No. 2, p. 189.
    [89]
    M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Biodegradable materials and metallic implants-a review, J. Funct. Biomater., 8(2017), No. 4, p. 44.
    [90]
    Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable metals, Mater. Sci. Eng. R, 77(2014), p. 1.
    [91]
    A. Chandrasekar, S. Sagadevan, and A. Dakshnamoorthy, Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique, Int. J. Phys. Sci., 8(2013), No. 32, p. 1639.
    [92]
    E.M.A. Khalil, R.A. Youness, M.S. Amer, and M.A. Taha, Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-P2O5-B2O3-SiO2 glass-ceramics, Ceram. Int., 44(2018), No. 7, p. 7867.
    [93]
    R.A. Youness, M.A. Taha, M. Ibrahim, and A. El-Kheshen, FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses, Silicon, 10(2018), No. 3, p. 1151.
    [94]
    R.A. Youness, M.A. Taha, A.A. El-Kheshen, and M. Ibrahim, Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass, Ceram. Int., 44(2018), No. 7, p. 20677.
    [95]
    S.M. Abo-Naf, E.S.M. Khalil, E.S.M. El-Sayed, H. Zayed, and R.A. Youness, In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses, Spectrochim. Acta A, 144(2015), p. 88.
    [96]
    R.A. Youness, M.A. Taha, and M. Ibrahim, In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis, Ceram. Int., 44(2018), No. 17, p. 21323.
    [97]
    P.N. Jagadale, S.R. Kulal, M.G. Joshi, P.P. Jagtap, S.M. Khetre, and S.R. Bamane, Synthesis and characterization of nanostructured CaSiO3 biomaterial, Mater. Sci.-Poland, 31(2013), No. 2, p. 269.
    [98]
    H. Oonishi, L.L. Hench, J. Wilson, F. Suqihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamoto, and S. Mizokawa, Quantitative comparison of bone growth of bone growth behavior in granules of bioglass, A-W glass-ceramics, and hydroxyapatite, J. Biomed. Mater. Res., 51(2000), No. 1, p. 37.
    [99]
    A. Refaat, R.A. Youness, M.A. Taha, and M. Ibrahim, Effect of zinc oxide on the electronic properties of carbonated hydroxyapatite, J. Mol. Struct., 1147(2017), p. 148.
    [100]
    V.P. Orlovskii, V.S. Komlev, and S.M. Barinov, Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater., 38(2002), No. 10, p. 973.
    [101]
    R. Langer and J.P. Vacanti, Tissue engineering, Science, 260(1993), No. 5110, p. 920.
    [102]
    E.M. Christenson, K.S. Anseth, J.J.P. van den Beucken Jeroen, C.K. Chan, B. Ercan, and J.A. Jansen, Nanobiomaterial applications in orthopaedics, J. Orthop. Res., 25(2007), No. 1, p. 11.
    [103]
    S.V. Dorozhkin, Biocomposites and hybrid biomaterials based on calcium orthophosphates, Biomatter, 1(2011), No. 1, p. 3.
    [104]
    V.S. Komlev, S.M. Barinov, V.P. Orlovskii, and S.G. Kurdyumov, Porous ceramic granules of hydroxyapatite, Refract. Ind. Ceram., 42(2001), No. 5-6, p. 195.
    [105]
    J.O. Akindoyo, M.D.H. Beg, S. Ghazali, and H.P. Heim, Impact modified PLA-hydroxyapatite compo-sites-thermo-mechanical properties, Composites Part A, 107(2018), p. 326.
    [106]
    M. Gong, Q. Zhao, L.M. Dai, Y.Y. Li, and T.S. Jiang, Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties, J. Asian Ceram. Soc., 5(2017), No. 2, p. 160.
    [107]
    K. Maca, M. Trunec, and R. Chmelik, Processing and properties of fine-grained transparent MgAl2O4 ceramics, Ceram. Silik., 51(2017), No. 2, p. 94.
    [108]
    A. Vladescu, S.C. Padmanabhan, F. Ak Azem, M. Braic, I. Titorencu, I. Birlik, M.A. Morris, and V. Braic, Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite, J. Mech. Behav. Biomed. Mater., 63(2016), p. 314.
    [109]
    F. Heidari, M. Razavi, M.E. Bahrololoom, R. Bazargan-Lari, D. Vashaee, H. Kotturi, and L. Tayebi, Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications, Mater. Sci. Eng. C, 65(2016), p. 338.
    [110]
    A. Vladescu, I. Birlik, V. Baric, M. Toparli, E. Celik, and F. Ak Azem, Enhancement of the mechanical properties of hydroxyapatite by SiC addition, J. Mech. Behav. Biomed. Mater., 40(2014), p. 362.
    [111]
    R.K. Roeder, G.L. Converse, R.J. Kane, and W. Yue, Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes, JOM, 60(2008), No. 3, p. 38.
    [112]
    G.S. Upadhyaya, Powder Metallurgy Technology, Cambridge International Science Publishing, UK, 2002.
    [113]
    M.J. Donachie and M.F. Burr, Effects of pressing on metal powders, JOM, 15(1963), No. 11, p. 849.
    [114]
    S.Y. Gómes and D. Hotza, Predicting powder densification during sintering, J. Eur. Ceram. Soc., 38(2018), No. 4, p. 1736.
    [115]
    T. Spusta, J. Svoboda, and K. Maca, Study of pore closure during pressure-less sintering of advanced oxide ceramics, Acta Mater., 115(2016), p. 347.
    [116]
    G.L. Messing and A.J. Stevenson, Materials science:toward pore-free ceramics, Science, 322(2008), p. 383.
    [117]
    C.T. Campbell, S.C. Parker, and D.E. Starr, The effect of size-dependent nanoparticle energetics on catalyst sintering, Science, 298(2002), No. 5594, p. 811.
    [118]
    C. Herring, Effect of change of scale on sintering phenomena, J. Appl. Phys., 21(1950), No. 4, p. 301.
    [119]
    J. Pan, Modeling sintering at different length scales, Int. Mater. Rev., 48(2003), No. 2, p. 69.
    [120]
    T.S. Yeh and M.D. Scaks, Low-temperature sintering of aluminum oxide, J. Am. Ceram. Soc., 71(1988), No. 10, p. 841.
    [121]
    E.A. Barringer and H.K. Bowman, Formation, packing, and sintering of mono-dispersed TiO2 powders, J. Am. Ceram. Soc., 65(1982), No. 12, p. 199.
    [122]
    X. Kuang, G. Carotenuto, and L. Nicolais, A review of ceramic sintering and suggestions on reducing sintering temperatures, Adv. Perform. Mater., 4(1997), No. 3, p, 257.
    [123]
    Z. He and J. Ma, Grain growth rate constant of hot-pressed alumina ceramics, Mater. Lett., 44(2000), No. 1, p. 14.
    [124]
    S.C. Liao, Y.J. Chen, B.H. Kear, and W.E. Mayo, High pressure/low temperature sintering of nanocrystalline alumina, Nanostruct. Mater., 10(1998), No. 6, p. 1063.
    [125]
    L. Gao, J.S. Hong, H. Miyamoto, and S.D.D.L. Torre, Bending strength and micro-structure of Al2O3 ceramics densified by spark plasma sintering, J. Eur. Ceram. Soc., 20(2000), No. 12, p. 2149.
    [126]
    Y. Zhou, K. Hirao, Y. Yamauchi, and S. Kanzaki, Densification and grain growth in pulse electric current sintering of alumina, J. Eur. Ceram. Soc., 24(2004), No. 12, p. 345.
    [127]
    N.J. Lóh, L. Simăo, C.A. Faller, A. de Noni Jr, and O.R.K. Montedo, A review of two-step sintering for ceramics, Ceram. Int., 42(2016), No. 11, p. 12556.
    [128]
    T. Spusta, J. Svoboda, and K. Maca, Study of pore closure during pressure-less sintering of advanced oxide ceramics, Acta Mater., 115(2016), p. 347.
    [129]
    A. Krell, J. Klimke and T. Hutzler, Advanced spinel and sub-μm Al2O3 for transparent armor applications, J. Eur. Ceram. Soc., 29(2009), No. 2, p. 275.
    [130]
    M.J. Mayo, Processing of nanocrystalline ceramics from ultrafine particles, Int. Mater. Rev., 41(1996), No. 3, p. 85.
    [131]
    M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Fabrication, properties and applications of dense hydroxyapatite:a review, J. Funct. Biomater., 6(2015), No. 4, p. 1099.
    [132]
    S. Ji, Q. Gu, and B. Xia, Porosity dependence of mechanical properties of solid materials, J. Mater. Sci., 41(2006), No. 6, p. 1757.
    [133]
    M.A. Taha, G.M. Elkomy, H.A. Mostafa, and E.S. Gouda, Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al-4.5wt% Cu nanocomposites prepared by mechanical alloying, Mater. Chem. Phys., 206(2018), p. 116.
    [134]
    M.A. Taha, A.H. Nassar, and M.F. Zawrah, Effect of milling parameters on sinterability, mechanical properties of Cu-4wt% ZrO2 nanocomposite, Mater. Chem. Phys., 181(2016), p. 26.
    [135]
    M.F. Zawrah, H.A. Zayed, R.A. Essawy, A.H. Nassar, and M.A. Taha, Preparation by mechanical alloying, characterization and sintering of Cu-20wt% Al2O3 nanocomposites, Mater. Des., 46(2013), p. 485.
    [136]
    I.Y. Guzman, Reaction sintering and its practical application, Glass Ceram., 50(1993), No. 9-10, p, 412.
    [137]
    M.A. Encinas-Romero, J. Peralta-Haley, and J.L. Valenzuela-García, Synthesis and structural characterization of hydroxyapatite-wollastonite biocomposites, produced by an alternative sol-gel route, J. Biomater. Nanobiotechnol., 4(2013), No. 4, p. 327.
    [138]
    S. Lala, S. Brahmachari, P.K. Das, D. Das, T. Kar, and S.K. Pradhan, Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time, Mater. Sci. Eng. C, 42(2014), p. 647.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(1014) PDF Downloads(75) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return