Yang Sun, Yong Li, Li-xin Zhang, Shi-ming Li, Ming-wei Yan,  and Jia-lin Sun, Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1177-1185. https://doi.org/10.1007/s12613-019-1829-2
Cite this article as:
Yang Sun, Yong Li, Li-xin Zhang, Shi-ming Li, Ming-wei Yan,  and Jia-lin Sun, Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1177-1185. https://doi.org/10.1007/s12613-019-1829-2
Research Article

Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2

+ Author Affiliations
  • Corresponding author:

    Yong Li    E-mail: lirefractory@vip.sina.com

  • Received: 15 December 2018Revised: 12 March 2019Accepted: 17 March 2019
  • An Al-AlN core-shell structure is beneficial to the performance of Al-Al2O3 composites. In this paper, the phase evolution and microstructure of Al-Al2O3-TiO2 composites at high temperatures in flowing N2 were investigated after the Al-AlN core-shell structure was created at 853 K for 8 h. The results show that TiO2 can convert Al into Al3Ti (~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N2 conditions, Al3Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows:Al3Ti reacts with C and other carbides (Al4C3 and Al4O4C) to form TiCx (x < 1). As the firing temperature increases, Al3Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiCx crystals to form a TiCN solid solution.
  • loading
  • [1]
    E.M.M. Ewais, Carbon based refractories, J. Ceram. Soc. Jpn., 112(2004), No. 1310, p. 517.
    [2]
    T.B. Zhu, Y.W. Li, S.B. Sang, and Z.P. Xie, Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets, Mater. Des., 124(2017), p. 16.
    [3]
    W. Yang, X.H Wang, L.F. Zhang, Q.L. Shan, and X.F. Liu, Cleanliness of low carbon aluminum-killed steels during secondary refining processes, Steel Res. Int., 84(2013), No. 5, p. 473.
    [4]
    C.H. Ma, Y. Li, M.W. Yan, Y. Sun, and J.L. Sun, Investigation on a postmortem resin-bonded Al-Si-Al2O3, sliding gate with functional gradient feature, Ceram. Int., 44(2018), No. 6, p. 6384.
    [5]
    C. Atzenhofer, S. Gschiel, and H. Harmuth, Phase formation in Al2O3-C refractories with Al addition, J. Eur. Ceram. Soc., 37(2016), No. 4, p. 1805.
    [6]
    P. Jiang, J.L. Sun, W.D. Xue, J.H. Chen, R.V. Kumar, and Y. Li, New synthetic route to Al4O4C reinforced Al-Al2O3 composite materials, Solid State Sci., 46(2015), p. 33.
    [7]
    M.W. Yan, Y. Li, H.Y. Li, and J.L. Sun, Theoretical analysis and synthesis of Al4O4C and Al2CO phase in the resin bonded Al-Al2O3 refractory in N2-flowing, Ceram. Int., 44(2017), No. 2, p. 1493.
    [8]
    S. Zhang and A. Yamaguchi, Hydration resistances and reactions with CO of Al4O4C and Al2OC formed in carbon-containing refractories with Al, J. Ceram. Soc. Jpn., 104(1996), No. 1209, p. 393.
    [9]
    C.A. Qiu and R. Metselaar, Thermodynamic evaluation of the Al2O3-Al4C3 system and stability of Al-oxycarbides, Z. Metallkd., 86(1995), No. 3, p. 198.
    [10]
    E.L. Amma and G.A. Jeffrey, Structure of aluminum oxycarbide Al2OC:a short-range wurtzite super-structure, J. Chem. Phys., 34(1961), No. 1, p. 252.
    [11]
    J.M. Lihrmann, J. Tirlocq, P. Descamps, and F. Cambier, Thermodynamics of the Al-C-O system and properties of SiC-AlN-Al2OC composites, J. Eur. Ceram. Soc., 19(1999), No. 16, p. 2781.
    [12]
    J.M. Lihrmann, Thermodynamics of the Al2O3-Al4C3 system:I. Thermochemical functions of Al oxide, carbide and oxycarbides between 298 and 2100 K, J. Eur. Ceram. Soc., 28(2008), No. 3, p. 633.
    [13]
    J.M. Lihrmann, Thermodynamics of the Al2O3-Al4C3 system:Ⅱ. Free energies of mixing, solid solubilities and activities, J. Eur. Ceram. Soc., 28(2008), No. 3, p. 643.
    [14]
    J.M. Lihrmanm, Thermodynamics of the Al2O3-Al4C3 system:Ⅲ. Equilibrium vapour pressures and activation energies for volatilization, J. Eur. Ceram. Soc., 28(2008), No. 3, p. 649.
    [15]
    J.M. Lihrmann, T. Zambetakis, and M. Daire, High-temperature behavior of the aluminum oxycarbide Al2OC in the system Al2O3-Al4C3 and with additions of aluminum nitride, J. Am. Ceram. Soc., 72(1989), No. 9, p. 1704.
    [16]
    S.Y. Kuo and A.V. Virkar, Phase equilibria and phase transformation in the aluminum nitride-aluminum oxycarbide pseudobinary system, J. Am. Ceram. Soc., 72(1989), No. 4, p. 540.
    [17]
    K. Motzfeldt, Comment on "Thermodynamics of the Al-C-O ternary system"[J. Electrochem. Soc. 153, E119(2006)], J. Electrochem. Soc., 154(2007), No. 3, p. S1.
    [18]
    K. Cheng, C. Yu, J. Ding, C.J. Deng, H.X. Zhu, and Z.L. Xue, Synthesis and characterization of AlN whiskers by nitridation of Al4O4C, J. Alloys Compd., 719(2017), p. 308.
    [19]
    K. Cheng, C.J. Deng, J. Ding, C. Yu, and H.X. Zhu, Synthesis of Al2O3 nanowires by heat-treating Al4O4C in a carbon-containing environment, Ceram. Int., 44(2017), No. 5, p. 4996.
    [20]
    Y.B. Li, Y. Bando, and D. Golberg, Single-crystalline α-Al2O3 nanotubes converted from Al4O4C nanowires, Adv. Mater., 17(2005), No. 11, p. 1401.
    [21]
    H.G. Zhu, Y.L. Jiang, Y.Q. Yao, J.Z. Song, J.L. Li, and Z.H. Xie, Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al-TiO2-C powder mixtures, Mater. Chem. Phys., 137(2012), No. 2, p. 532.
    [22]
    T.D. Xia, T.Z. Liu, W.J. Zhao, B.Y. Ma, and T.M. Wang, Self-propagating high-temperature synthesis of Al2O3-TiC-Al composites by aluminothermic reactions, J. Mater. Sci., 36(2001), No. 23, p. 5581.
    [23]
    Y.M.Z. Ahmed, Z.I. Zaki, D.H.A. Besisa, A.M.M Amin, and R.K. Bordia, Effect of zirconia and iron on the mechanical properties of Al2O3/TiC composites processed using combined self-propagating synthesis and direct consolidation technique, Mater. Sci. Eng. A, 696(2017), p. 182.
    [24]
    A. Hajalilou, M. Hashim, M. Nahavandi, and I. Ismail, Mechanochemical carboaluminothermic reduction of rutile to produce TiC-Al2O3, nanocomposite, Adv. Powder Technol., 25(2014), No. 1, p. 423.
    [25]
    R. Yamanoglu, N. Gulsoy, E.A. Olevsky, and H.O. Gulsoy, Production of porous Ti5Al2.5Fe alloy via pressureless spark plasma sintering, J. Alloys Compd., 680(2016), p. 654.
    [26]
    A. Rajabi, M.J. Ghazali, and A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet-A review, Mater. Des., 67(2015), p. 95.
    [27]
    M.W. Yan, Y. Li, J.J. Wang, H.Y. Li, Y. Sun, and C.H. Ma. Phase evolution mechanism of non-oxide bonded Al-Al2O3-MgO-ZrO2 composites at 1873K in flowing nitrogen, J. Am. Ceram. Soc., 101(2017), No. 5, p. 2162.
    [28]
    U.R. Kattner, J.C. Lin, and Y.A Chang, Thermodynamic assessment and calculation of the Ti-Al system, Metall. Trans. A, 23(1992), No. 8, p. 2081.
    [29]
    M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple, Intermetallics., 32(2013), p. 297.
    [30]
    M. Sujata, S. Bhargava, and S. Sangal. On the formation of TiAl3 during reaction between solid Ti and liquid Al, J. Mater. Sci. Lett., 16(1997), No. 13, p. 1175.
    [31]
    M.Z. Mehrizi, R. Beygi, and G. Eisaabadi, Synthesis of Al/TiC-Al2O3 nanocomposite by mechanical alloying and subsequent heat treatment, Ceram. Int., 42(2016), No. 7, p. 8895.
    [32]
    M.W. Chase Jr, NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, Washington DC, 1998.
    [33]
    Y.F. Qin, G.F. Zheng, L.Y. Zhu, J.N. He, F.Y. Zhang, Y.C. Dong, and F.C. Yin, Structure and wear characteristics of TiCN nanocomposite coatings fabricated by reactive plasma spraying, Surf. Coat. Technol., 342(2018), p. 137.
    [34]
    A. Kostov, B. Friedrich, and D. Zivkovic, Predicting thermodynamic properties in Ti-Al binary system by FactSage, Comput. Mater. Sci., 37(2006), No. 3, p. 355.
    [35]
    N.J. Ashley, R.W. Grimes, and K.J. McClellan, Accommodation of non-stoichiometry in TiN1-x, and ZrN1-x, J. Mater. Sci., 42(2007), No. 6, p. 1884.
    [36]
    Z. Dridi, B. Bouhafs, P. Ruterana, and H. Aourag, First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx, J. Phys. Condens. Matter, 14(2002), No. 43, p. 10237.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(625) PDF Downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return