Ying Yan, Guo-qiang Zhang, Li-jia Chen, and Xiao-wu Li, Thickness-related synchronous increase in strength and ductility of ultrafine-grained pure aluminum sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp.1450-1456. https://dx.doi.org/10.1007/s12613-019-1839-0
Cite this article as: Ying Yan, Guo-qiang Zhang, Li-jia Chen, and Xiao-wu Li, Thickness-related synchronous increase in strength and ductility of ultrafine-grained pure aluminum sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp.1450-1456. https://dx.doi.org/10.1007/s12613-019-1839-0
Research Article

Thickness-related synchronous increase in strength and ductility of ultrafine-grained pure aluminum sheets

Author Affilications
Funds: 

This work was financially supported by the National Natural Science Foundation of China (Nos. 51571058 and 51871048), and the Open Foundation of Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, China (No. ATM20170001).

  • To explore the specimen size effect of mechanical behavior of ultrafine-grained (UFG) materials with different structures, UFG Al sheets processed by equal channel angular pressing (ECAP) were selected as target materials and the dependency of tensile behavior on sheet thickness (t) was systematically investigated. The strength and ductility of ECAPed UFG Al sheets were improved synchronously as t increased from 0.2 to 0.7 mm, and then no apparent change occurred when t reached to 0.7 and 1.0 mm. The corresponding microstructure evolved from dislocation networks in equiaxed grains into the walls and subgrains and finally into the dominated cells in elongated grains or subgrains. Meanwhile, dense shear lines (SLs) and shear bands (SBs) were clearly observed and microvoids and cracks were initiated along SBs with the increase of t. These observations indicated that the plastic deformation of UFG Al sheets was jointly controlled by shear banding, dislocation sliding, and grain-boundary sliding. Furthermore, the propagation of SBs became difficult as t increased. Finally, the obtained results were discussed and compared with those of annealed UFG Al and UFG Cu.
  • J. Xu, X.C. Zhu, D.B. Shan, B. Guo, and T.G. Langdon, Effect of grain size and specimen dimensions on micro-forming of high purity aluminum, Mater. Sci. Eng. A, 646(2015), p. 207.
    Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia, Influence of specimen dimensions on the tensile behavior of ultra-grained Cu, Scripta Mater., 59(2008), No. 6, p. 627.
    K. Kumar, A. Pooleery, K. Madhusoodanan, R.N. Singh, A. Chatterjee, B.K. Dutta, and R.K. Sinha, Optimisation of thickness of miniature tensile specimens for evaluation of mechanical properties, Mater. Sci. Eng. A, 675(2016), p. 32.
    J. An, Y.F. Wang, Q.Y. Wang, W.Q. Cao, and C.X. Huang, The effects of reducing specimen thickness on mechanical behavior of cryo-rolled ultrafine-grained copper, Mater. Sci. Eng. A, 651(2016), p. 1.
    J. Xu, J.W. Li, L. Shi, D.B. Shan, and B. Guo, Effects of temperature, strain rate and specimen size on the deformation behaviors at micro/meso-scale in ultrafine-grained pure Al, Mater. Charact., 109(2015), p. 181.
    W.J. Kim and Y.K. Sa, Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears, Scripta Mater., 54(2006), No. 7, p. 1391.
    X. Ma, R. Lapovok, C. Gu, A. Molotnikov, Y. Estrin, E.V. Pereloma, C.H.J. Davies, and P.D. Hodgson, Deep drawing behavior of ultrafine grained copper:modelling and experiment, J. Mater. Sci., 44(2009), No. 14, p. 3807.
    J. Xu, L. Shi, C.X. Wang, D.B. Shan, and B. Guo, Micro hot embossing of micro-array channels in ultrafine-grained pure aluminum using a silicon die, J. Mater. Process. Technol., 225(2015), p. 375.
    D.Y.W. Yu and F. Spaepen, The yield strength of thin copper films on Kapton, J. Appl. Phys., 95(2004), No. 6, p. 2991.
    A. Diehl, U. Engel, and M. Geiger, Influence of microstructure on the mechanical properties and the forming behavior of very thin metal foils, Int. J. Adv. Manuf. Technol., 47(2010), No. 1-4, p. 53.
    L.V. Raulea, A.M. Goijaerts, L.E. Govaert, and F.P.T. Baaijens, Size effects in the processing of thin metal sheets, J. Mater. Process. Technol., 115(2001), No. 1, p. 44.
    A. Rosochowski, W. Presz, L. Olejnik, and M. Richert, Micro-extrusion of ultra-fine grained aluminium, Int. J. Adv. Manuf. Technol., 33(2007), No. 1-2, p. 137.
    W.L. Chan, M.W. Fu, and J. Lu, The size effect on micro deformation behavior in micro-scale plastic deformation, Mater. Des., 32(2011), No. 1, p. 198.
    G.P. Zhang, K.H. Sun, B. Zhang, J. Gong, C. Sun, and Z.G. Wang, Tensile and fatigue strength of ultrathin copper films, Mater. Sci. Eng. A, 483-484(2008), p. 387.
    A. Rinaldi, P. Peralta, C. Friesen, and K. Sieradzki, Sample-size effects in the yield behavior of nanocrystalline nickel, Acta Mater., 56(2008), No. 3, p. 511.
    Y. Yang, N. Yao, W.O. Soboyejo, and C. Tarquinio, Deformation and fracture in micro-tensile tests of freestanding electrodeposited nickel thin films, Scripta Mater., 58(2008), No. 12, p. 1062.
    H.D. Espinosa, B.C. Prorok, and B. Peng, Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension, J. Mech. Phys. Solids, 52(2004), No. 3, p. 667.
    Y. Yan, L.J. Chen, G.Q. Zhang, D. Han, and X.W. Li, Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation, Int. J. Miner, Metall. Mater., 25(2018), No. 6, p. 663.
    A. Vinogradov and S. Hashimoto, Multiscale phenomena in fatigue of ultrafine grain materials-an overview, Mater. Trans., 42(2001), No. 1, p. 74.
    J.W. Li, J. Xu, B. Guo, D.B. Shan, and T.G. Langdon, Shear fracture mechanism in micro-tension of an ultrafine-grained pure copper using synchrotron radiation X-ray tomography, Scripta Mater., 132(2017), p. 25.
    M. Samaee, S. Najafi, A.R. Eivani, H.R. Jafarian, and J. Zhou, Simultaneous improvements of the strength and ductility of fine-grained AA6063 alloy with increasing number of ECAP passes, Mater. Sci. Eng. A, 669(2016), p. 350.
    Z.W. Yu, A.T. Tang, Q. Wang, Z.Y. Gao, J.J. He, J. She, K. Song, and F.S. Pan, High strength and superior ductility of an ultra-fine grained magnesium-manganese alloy, Mater. Sci. Eng. A, 648(2015), p. 202.
    D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia, Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility, Scripta Mater., 49(2003), No. 4, p. 297.
    R.T. Ott, J. Geng, M.F. Besser, M.J. Kramer, Y.M. Wang, E.S, Park, R. LeSar, and A.H. King, Optimization of strength and ductility in nanotwinned ultra-fine grained Ag:Twin density and grain orientations, Acta Mater., 96(2015), p. 378.
    L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science, 323(2009), No. 5914, p. 607.
    P. Zhang, X.H. An, Z.J. Zhang, S.D. Wu, S.X. Li, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon, Optimizing strength and ductility of Cu-Zn alloys through severe plastic deformation, Scripta Mater., 67(2012), No. 11, p. 871.
    D. Han, Z.Y. Wang, Y. Yan, F. Shi, and X.W. Li, A good strength-ductility match in Cu-Mn alloys with high stacking fault energies:Determinant effect of short range ordering, Scripta Mater., 133(2017), p. 59.
    D. Han, X.J. Guan, Y. Yan, F. Shi, and X.W. Li, Anomalous recovery of work hardening rate in Cu-Mn alloys with high stacking fault energies under uniaxial compression, Mater. Sci. Eng. A, 743(2019), p. 745.
    C. Howard, D. Frazer, A. Lupinacci, S. Parker, R.Z. Valiev, C. Shin, B.W. Choi, and P. Hosemann, Investigation of specimen size effects by in-situ microcompression of equal channel angular pressed copper, Mater. Sci. Eng. A, 649(2016), p. 104.
    R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet, Deformation behavior of ultra-fine-grained copper, Acta Metall. Mater., 42(1994), No. 7, p. 2467.
    R.Z. Valiev, Structure and mechanical properties of ultrafine-grained metals, Mater. Sci. Eng. A, 234-236(1997), p. 59.
    P.L. Sun, E.K. Cerreta, G.T. Gray III, and J.F. Bingert, The effect of grain size, strain rate, and temperature on the mechanical behavior of commercial purity aluminum, Metall. Mater. Trans. A, 37(2006), No. 10, p. 2983.
  • Related Articles

    [1]Ji-heng Li, Chao Yuan, Xing Mu, Xiao-qian Bao, Xue-xu Gao. Enhancement of ductility and improvement of abnormal Goss grain growth of magnetostrictive Fe-Ga rolled alloys [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(4): 444-452. DOI: 10.1007/s12613-018-1590-y
    [2]Jian-liang Zhang, Zhen-yang Wang, Xiang-dong Xing, Zheng-jian Liu. Effect of aluminum oxide on the compressive strength of pellets [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(4): 339-344. DOI: 10.1007/s12613-014-0914-9
    [3]Rong-ting Xiao, Hao Yu, Ping Zhou. Austenite grain growth behavior of Q1030 high strength welded steel [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(8): 711-716. DOI: 10.1007/s12613-012-0617-z
    [4]Bing-hua Chen, Hao Yu. Hot ductility behavior of V-N and V-Nb microalloyed steels [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(6): 525-529. DOI: 10.1007/s12613-012-0590-6
    [5]Chai Jaturapitakkul, Jatuphon Tangpagasit, Sawang Songmue, Kraiwood Kiattikomol. Filler effect of fine particle sand on the compressive strength of mortar [J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(2): 240-246. DOI: 10.1007/s12613-011-0429-6
    [6]Benfu Hu, Quanmao Yu, Lin Lu, Chengchang Jia, Hiroshi Kinoshita, Heishichiro Takahashi. High temperature strength and ductility of the (C+N) strengthening Fe-Cr-Mn(W, V) steels [J]. International Journal of Minerals, Metallurgy and Materials, 2002, 9(4): 292-297.
    [7]Xinhua Wang, Xinyu Liu, Dexin Du, Kewen Zhao, Bing Wu. Hot Ductility of Vanadium Micro-alloying Steel Continuous Casting Slabs [J]. International Journal of Minerals, Metallurgy and Materials, 2002, 9(1): 9-12.
    [8]Xinyu Liu, Bo Wen, Xinhua Wang, Qiang Niu, Hong Chen. Prediction of Hot Ductility of Low-Carbon Steels Based on BP Network [J]. International Journal of Minerals, Metallurgy and Materials, 2001, 8(3): 182-184.
    [9]Haiwen Luo, Pei Zhao, Zijiu Dang. High Temperature Ductility Loss of 16MnCr5 Pinion Steels [J]. International Journal of Minerals, Metallurgy and Materials, 1998, 5(3): 123-128.
    [10]WU Dongmei, WANG Xinhua, LIU Xinyu, WANG Wanjun, FEI Huichun, ZHANG Li, YE Jinwei. Carbide and Nitride Precipitation in High Temperature Tensiled Specimens and Hot Ductility of Nb-and Ti-Containing Steel CC Slabs [J]. International Journal of Minerals, Metallurgy and Materials, 1997, 4(2): 21-25.
  • Cited by

    Periodical cited type(4)

    1. Pan-jun Wang, Ling-wei Ma, Xue-qun Cheng, et al. Influence of grain refinement on the corrosion behavior of metallic materials: A review. International Journal of Minerals, Metallurgy and Materials, 2021, 28(7): 1112. DOI:10.1007/s12613-021-2308-0
    2. Zhi Zhang, Jing-huai Zhang, Jun Wang, et al. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. International Journal of Minerals, Metallurgy and Materials, 2021, 28(1): 30. DOI:10.1007/s12613-020-2190-1
    3. Y. Yan, Y. L. Liu, M. Q. Liu, et al. Thickness-Dependent Mechanical Behavior of 〈111〉-Oriented Cu Single Crystals. Metallurgical and Materials Transactions A, 2020, 51(5): 2044. DOI:10.1007/s11661-020-05689-1
    4. Hong-Mei Ji, Xiao-Wu Li. Reference Module in Materials Science and Materials Engineering. DOI:10.1016/B978-0-12-822944-6.00028-1

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (540) PDF downloads (16) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return