Omer Yunus Gumusand Halil Ibrahim Unal, Effect of surfactant on the dielectric and electrorheological properties of zinc borate/silicone oil dispersions, Int. J. Miner. Metall. Mater., 26(2019), No. 12, pp. 1523-1530. https://doi.org/10.1007/s12613-019-1853-2
Cite this article as:
Omer Yunus Gumusand Halil Ibrahim Unal, Effect of surfactant on the dielectric and electrorheological properties of zinc borate/silicone oil dispersions, Int. J. Miner. Metall. Mater., 26(2019), No. 12, pp. 1523-1530. https://doi.org/10.1007/s12613-019-1853-2
Research Article

Effect of surfactant on the dielectric and electrorheological properties of zinc borate/silicone oil dispersions

+ Author Affiliations
  • Corresponding author:

    Omer Yunus Gumus    E-mail: omer.gumus@btu.edu.tr

  • Received: 16 January 2019Revised: 16 April 2019Accepted: 18 April 2019
  • Zinc borate (ZB) particles dispersed in silicone oil (SO) at concentrations of φ=5vol%-20vol% were subjected to dielectric analysis to elucidate their polarization strength, time, and mechanism. Results revealed that all virgin dispersions lacked polarization. Triton X-100, a non-ionic surfactant, was added to ZB/SO dispersions to enhance the polarizability of ZB particles. The addition of 1vol% Triton X-100 enhanced the polarizability of ZB/SO dispersions, and the 15vol%ZB/SO system provided the highest dielectric difference Δε' (the difference in ε' values at zero and infinite frequency, Δε'=ε0-εµ) of 3.64. The electrorheological (ER) activities of the ZB/SO/Triton-X dispersion system were determined through the ER response test, and viscoelastic behaviors were investigated via oscillation tests. A recoverable deformation of 36% under an applied electrical field strength of 1.5 kV/mm was detected through creep and creep recovery tests.
  • loading
  • [1]
    H.R. Yue, T. Jiang, Q.Y. Zhang, P.N. Duan, and X.X. Xue, Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 768.
    [2]
    H. Conrad, Y. Li, and Y. Chen, The temperature-dependence of the electrorheology and related electrical-properties of corn starch corn-oil suspensions, J. Rheol., 39(1995), No. 5, p. 1041.
    [3]
    Y. Liu, J.H. Yuan, Y.Z. Dong, X.P. Zhao, and J.B. Yin, Enhanced temperature effect of electrorheological fluid based on cross-linked poly(ionic liquid) particles:rheological and dielectric relaxation studies, Soft Matter, 13(2017), No. 5, p. 1027.
    [4]
    A. Lengálová, V. Pavlinek, P. Sáha, O. Quadrat, and J. Stejskal, The effect of dispersed particle size and shape on the electrorheological behaviour of suspensions, Colloids Surf. A, 227(2003), No. 1-3, p. 1.
    [5]
    O. Erol and H.I. Unal, Core/shell-structured, covalently bonded TiO2/poly(3,4-ethylenedioxythiophene) dispersions and their electrorheological response:the effect of anisotropy, RSC Adv., 5(2015), No. 125, p. 103159.
    [6]
    C.M. Yoon, J. Ryu, J.Y. Yun, Y.K. Kim, and J. Jang, Synthesis of hierarchical silica/titania hollow nanoparticles and their enhanced electroresponsive activity, ACS Appl. Mater. Interfaces, 10(2018), No. 7, p. 6570.
    [7]
    K.Y. Shin, S. Lee, S. Hong, and J. Jang, Graphene size control via a mechanochemical method and electroresponsive properties, ACS Appl. Mater. Interfaces, 6(2014), No. 8, p. 5531.
    [8]
    Y. Otsubo, M. Sekine, and S. Katayama, Effect of surface modification of colloidal silica on the electrorheology of suspensions, J. Colloid Interface Sci., 146(1991), No. 2, p. 395.
    [9]
    Y.D. Liu, H.Y. Kim, J.E. Kim, I.G. Kim, H.J. Choi, and S.J. Park, Enhanced effect of dopant on polyaniline nanofiber based electrorheological response, Mater. Chem. Phys., 147(2014), No. 3, p. 843.
    [10]
    M.J. Espin, A.V. Delgado, and J.Z. Plocharski, Effect of additives and measurement procedure on the electrorheology of hematite/silicone oil suspensions, Rheol. Acta, 45(2006), No. 6, p. 865.
    [11]
    X.D. Duan, H. Chen, Y.J. He, and W.L. Luo, Enhancing yield stress of electrorheological fluids with liquid crystal additive, J. Phys. D, 33(2000), No. 6, p. 696.
    [12]
    M.M. Ramos-Tejada, J.M. Rodríguez, and Á.V. Delgado, Electrorheology of clay particle suspensions. Effects of shape and surface treatment, Rheol. Acta, 57(2018), No. 5, p. 405.
    [13]
    X.D. Duan, W.L. Luo, and W. Wu, New theory for improving performance of electrorheological fluids by additives, J. Phys. D, 33(2000), No. 23, p. 3102.
    [14]
    E.C. McIntyre, H.X. Yang, and P.F. Green, Electrorheology of polystyrene filler/polyhedral silsesquioxane suspensions, ACS Appl. Mater. Interfaces, 4(2012), No. 4, p. 2148.
    [15]
    F. Ikazaki, A. Kawai, K. Uchida, T. Kawakami, K. Edamura, K. Sakurai, H. Anzai, and Y. Asako, Mechanisms of electrorheology:the effect of the dielectric property, J. Phys. D, 31(1998), No. 3, p. 336.
    [16]
    J.B. Yin and X.P. Zhao, Giant electrorheological activity of high surface area mesoporous cerium-doped TiO2 templated by block copolymer, Chem. Phys. Lett., 398(2004), No. 4-6, p. 393.
    [17]
    M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel, and A. Serghei, Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials:Characteristic frequencies and scaling laws, J. Chem. Phys., 142(2015), No. 19, art. No. 194703.
    [18]
    S. Ozkan, O.Y. Gumus, and H.I. Unal, Synergistic effects of surfactant on dielectric and electrorheological properties of boronic acid derivative polymer dispersions, Macromol. Chem. Phys., 217(2016), No. 24, p. 2736.
    [19]
    K.S. Cole and R.H. Cole, Dispersion and absorption in dielectricsI. alternating current characteristics, J. Chem. Phys., 9(1941), No. 4, p. 341.
    [20]
    A.V. Agafonov, O.I. Davydova, A.S. Krayev, O.S. Ivanova, O.L. Evdokimova, T.V. Gerasimova, A.E. Baranchikov, V.V. Kozik, and V.K. Ivanov, Unexpected effects of activator molecules' polarity on the electroreological activity of titanium dioxide nanopowders, J. Phys. Chem. B, 121(2017), No. 27, p. 6732.
    [21]
    S.D. Kim, W.L. Zhang, and H.J. Choi, Pickering emulsion-fabricated polystyrene-graphene oxide microspheres and their electrorheology, J. Mater. Chem. C, 2(2014), No. 36, p. 7541.
    [22]
    M. Mrlik, M. Sedlacik, V. Pavlinek, P. Bober, M. Trchová, J. Stejskal, and P. Saha, Electrorheology of aniline oligomers, Colloid Polym. Sci., 291(2013), No. 9, p. 2079.
    [23]
    M.S. Cho, H.J. Choi, and M.S. Jhon, Shear stress analysis of a semiconducting polymer based electrorheological fluid system, Polymer, 46(2005), No. 25, p. 11484.
    [24]
    D.C. Cheng, Yield stress:A time-dependent property and how to measure it, Rheol. Acta, 25(1986), No. 5, p. 542.
    [25]
    M. Dinkgreve, J. Paredes, M.M. Denn, and D. Bonn, On different ways of measuring "the" yield stress, J. Non-Newtonian Fluid Mech., 238(2016), p. 233.
    [26]
    E. Sever and H.I. Unal, Electrorheological, viscoelastic, and creep-recovery behaviors of covalently bonded nanocube-TiO2/poly(3-octylthiophene) colloidal dispersions, Polym. Compos., 39(2018), No. 2, p. 351.
    [27]
    J.E. Martin and R.A. Anderson, Chain model of electrorheology, J. Chem. Phys., 104(1996), No. 12, p. 4814.
    [28]
    M.S. Cho, J.H. Lee, H.J. Choi, K.H. Ahn, S.J. Lee, and D. Jeon, Linear viscoelasticity of semiconducting polyaniline based electrorheological suspensions, J. Mater. Sci., 39(2004), No. 4, p. 1377.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(864) PDF Downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return