Jin-yang Zhu, Li-ning Xu, Min-xu Lu,  and Wei Chang, Cathodic reaction mechanisms in CO2 corrosion of low-Cr steels, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp. 1405-1414. https://doi.org/10.1007/s12613-019-1861-2
Cite this article as:
Jin-yang Zhu, Li-ning Xu, Min-xu Lu,  and Wei Chang, Cathodic reaction mechanisms in CO2 corrosion of low-Cr steels, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp. 1405-1414. https://doi.org/10.1007/s12613-019-1861-2
Research Article

Cathodic reaction mechanisms in CO2 corrosion of low-Cr steels

+ Author Affiliations
  • Corresponding author:

    Jin-yang Zhu    E-mail: zhujinyang@ustb.edu.cn

  • Received: 15 January 2019Revised: 5 May 2019Accepted: 2 June 2019
  • The cathodic reaction mechanisms in CO2 corrosion of low-Cr steels were investigated by potentiodynamic polarization and galvanostatic measurements. Distinct but different dominant cathodic reactions were observed at different pH levels. At the higher pH level (pH >~5), H2CO3 reduction was the dominant cathodic reaction. The reaction was under activation control. At the lower pH level (pH <~3.5), H+ reduction became the dominant one and the reaction was under diffusion control. In the intermediate area, there was a transition region leading from one cathodic reaction to another. The measured electrochemical impedance spectrum corresponded to the proposed cathodic reaction mechanisms.
  • loading
  • [1]
    X. Jiang, Y.G. Zheng, D.R. Qu, and W. Ke, Effect of calcium ions on pitting corrosion and inhibition performance in CO2 corrosion of N80 steel, Corros. Sci., 48(2006), No. 10, p. 3091.
    [2]
    G. Schmitt, Advances in CO2 corrosion,[in] NACE Corrosion, Houston, 1984, art. No. 84001.
    [3]
    A. Ikeda, M. Ueda, and S. Mukai, CO2 behavior of carbon and Cr steels,[in] NACE Corrosion, Houston, 1984, art. No. 84039.
    [4]
    C. de Waard and D.E. Milliams, Carbonic acid corrosion of steel, Corrosion, 31(1975), No. 5, p. 177.
    [5]
    G. Schmitt and M. Horstemeier, Fundamental aspects of CO2 metal loss corrosion-Part II:Influence of different parameters on CO2 corrosion mechanism,[in] NACE Corrosion, Houston, 2006, art. No. 06112.
    [6]
    G.I. Ogundele and W.E. White, Some observation on corrosion of carbon steel in aqueous environments containing carbon dioxide, Corrosion, 42(1986), No. 2, p. 71.
    [7]
    S. Nesic, J. Postlethwaite, and S. Olsen, An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions, Corrosion, 52(1996), No. 4, p. 280.
    [8]
    X.Y. Zhang, G. Yu, F.P. Wang, and Y.L. Du, Influence of Cl- on corrosion behavior of API P105 steel in the CO2 saturated solution, Chem. Res. Chin. Univ., 20(1999), No. 7, p. 1115.
    [9]
    B.R. Linter and G.T. Burstein, Reaction of pipeline steels in carbon dioxide solutions, Corros. Sci., 41(1999), No. 1, p. 117.
    [10]
    C.F. Chen, M.X. Lu, G.X. Zhao, Z.Q. Bai, M.L. Yan, and Y.Q. Yang, The EIS analysis of cathodic reactions during CO2 corrosion of N80 steel, Acta Metall. Sin., 39(2003), No. 1, p. 94.
    [11]
    J.Y. Zhu, L.N. Xu, M.X. Lu, L. Zhang, W. Chang, and L.H. Hu, Essential criterion for evaluating the corrosion resistance of 3Cr steel in CO2 environments:Prepassivation, Corros. Sci., 93(2015), p. 336.
    [12]
    B.W. Luo, J. Zhou, P.P. Bai, S.Q. Zheng, T. An, and X.L. Wen, Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2-H2O-CO2 system:products, reaction kinetics, and pitting sensitivity, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 646.
    [13]
    A. Pfennig and A. Kranzmann, Effect of CO2 and pressure on the stability of steels with different amounts of chromium in saline water, Corros. Sci., 65(2012), p. 441.
    [14]
    H.B. Wu, T. Wu, G. Niu, T. Li, R.Y. Sun, and Y. Gu, Effect of the frequency of high-angle grain boundaries on the corrosion performance of 5wt%Cr steel in a CO2 aqueous environment, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 315.
    [15]
    Q.L. Wu, Z.H. Zhang, X.M. Dong, and J.Q. Yang, Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environments, Corros. Sci., 75(2013), p. 400.
    [16]
    M. Ko, B. Ingham, N. Laycock, and D.E. Williams, In situ synchrotron X-ray diffraction study of the effect of chromium additions to the steel and solution on CO2 corrosion of pipeline steels, Corros. Sci., 80(2014), p. 237.
    [17]
    S.Q. Guo, L.N. Xu, L. Zhang, W. Chang, and M.X. Lu, Characterization of corrosion scale formed on 3Cr steel in CO2-saturated formation water, Corros. Sci., 110(2016), p. 123.
    [18]
    C.N. Cao and J.Q. Zhang, An Introduction to Electrochemical Impedance Spectroscopy, Science Press, Beijing, 2002.
    [19]
    Q.X. Zha, Kinetics of Electrode Process, Science Press, Beijing, 2002.
    [20]
    J.Y. Zhu, L.N. Xu, M.X. Lu, L. Zhang, W. Chang, and L.H. Hu, Cathodic reaction mechanism of 3Cr low alloy steel corroded in CO2-saturated high salinity solutions, Int. J. Electrochem. Soc., 10(2015), p. 1434.
    [21]
    C. de Waard, U. Lotz, and D.E. Milliams, Predictive model for CO2 corrosion engineering in wet natural gas pipelines, Corrosion, 47(1991), No.12, p. 976.
    [22]
    K. Videm, A. Dugstad, and L. Lunde, Parametric study of CO2 corrosion of carbon steel, Corrosion, 94(1994), p. 14.
    [23]
    Z.H. Duan and D.D. Li, Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250℃, 1 to 1000 bar with NaCl concentrations up to saturation of halite, Geochim. Cosmochim. Acta, 72(2008), No. 20, p. 5128.
    [24]
    R.C. Weast, M.J. Astle, and W.H. Beyer, Handbook of Chemistry and Physics, CRC Press, Florida, 2001.
    [25]
    S.Q. Guo, L.N. Xu, L. Zhang, W. Chang, and M.X. Lu, Corrosion of alloy steels containing 2% chromium in CO2 environments, Corros. Sci., 63(2012), p. 246.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(663) PDF Downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return