Cite this article as: |
C. D. Gómez-Esparza, A. Duarte-Moller, C. López-Díaz de León, R. Martínez-Sánchez, J. F. Hernández-Paz, and C. A. Rodríguez-González, Influence of ZnO nanoparticles on the microstructure of a CoCrFeMoNi matrix via powder metallurgy, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp. 1467-1476. https://doi.org/10.1007/s12613-019-1863-0 |
C. D. Gómez-Esparza E-mail: cynthia.gomez@cimav.edu.mx
C. A. Rodríguez-González E-mail: claudia.rodriguez@uacj.mx
[1] |
P. Ashwath and M.A. Xavior, Processing methods and property evaluation of Al2O3 and SiC reinforced metal matrix composites based on aluminum 2xxx alloys, J. Mater. Res., 31(2016), No. 9, p. 1201.
|
[2] |
M.A. Khan, G.M. Madhu, and R.R.N. Sailaja, Reinforcement of polymethyl methacrylate with silane-treated zinc oxide nanoparticles:fire retardancy, electrical and mechanical properties, Iran. Polym. J., 26(2017), No. 10, p. 765.
|
[3] |
R. Suntako, Effect of zinc oxide nanoparticles synthesized by a precipitation method on mechanical and morphological properties of the CR foam, Bull. Mater. Sci., 38(2015), No. 4, p. 1033.
|
[4] |
S. Wacharawichanant, P. Saetun, T. Lekkong, S. Thongyai, and P. Praserthdam, Effect of poly(styrene-co-maleic anhydride) compatibilizer on properties of polystyrene/zinc oxide composites, Iran. Polym. J., 21(2012), No. 6, p. 385.
|
[5] |
B.O. Fatile, B.O. Adewuyi, and H.T. Owoyemi, Synthesis and characterization of ZA-27 alloy matrix composites reinforced with zinc oxide nanoparticles, Eng. Sci. Technol. Int. J., 20(2017), No. 3, p. 1147.
|
[6] |
M.S. El-Wazery, R.A. Elsad, S.M. Khafagy, and M.M. Meiz, Enhancement of microstructure and mechanical properties of hypereutectic Al-16%Si alloy by ZnO nanocrystallites, Appl. Phys. A, 124(2018), p. 736.
|
[7] |
S. Tekumalla, N. Farhan, T.S. Srivatsan, and M. Gupta, Nano-ZnO particles' effect in improving the mechanical response of Mg-3Al-0.4Ce alloy, Metals, 6(2016), No. 11, p. 276.
|
[8] |
T.T. Shun, C.H. Hung, and C.F. Lee, Formation of ordered/disordered nanoparticles in FCC high entropy alloys, J. Alloys Compd., 493(2010), No. 1-2, p. 105.
|
[9] |
T.T. Shun, C.H. Hung, and C.F. Lee, The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700℃, J. Alloys Compd., 495(2010), No. 1, p. 55.
|
[10] |
T.T. Shun and Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, J. Alloys Compd., 479(2009), No. 1-2, p. 157.
|
[11] |
H.F. Sheng, M. Gong, and L.M. Peng, Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions, Mater. Sci. Eng. A, 567(2013), p. 14.
|
[12] |
X.Y. Liu, H.B.C. Yin, and Y. Xu, Microstructure, Mechanical and tribological properties of oxide dispersion strengthened high-entropy alloys, Materials, 10(2017), No. 11, p. 1312.
|
[13] |
H. Prasad, S. Singh, and B.B. Panigrahi, Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy, J. Alloys Compd., 692(2017), p. 720.
|
[14] |
H. Agarwal, S.V. Kumar, and S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles-An eco-friendly approach, Resour.-Effic. Technol., 3(2017), No. 4, p. 406.
|
[15] |
C.L.D. de León, I. Olivas-Armendariz, J.F. Hernanández Paz, C.D. Gómez-Esparza, C. Velasco-Santos, J.L. Rivera-Armenta, C.A. Rodríguez-González, and T. de Materiales, Synthesis by sol-gel and cytotoxicity of zinc oxide nanoparticles using wasted alkaline batteries, Dig. J. Nanomater. Bios., 12(2017), No. 2, p. 371.
|
[16] |
M.S. Staltsov, I.I. Chernov, I.A. Bogachev, B.A. Kalin, E.A. Olevsky, L.J. Lebedeva, and A.A. Nikitina, Optimization of mechanical alloying and spark-plasma sintering regimes to obtain ferrite-martensitic ODS steel, Nucl. Mater. Energy, 9(2016), p. 360.
|
[17] |
K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater., 61(2013), p. 4887.
|
[18] |
R. Marsalek, Particle size and zeta potential of ZnO, APCBEE Procedia, 9(2014), p. 13.
|
[19] |
W.H. Qi, Size effect on melting temperature of nanosolids, Phys. B, 368(2005), No. 1-4, p. 46.
|
[20] |
A.E. Nassar and E.E. Nassar, Properties of aluminum matrix nano composites prepared by powder metallurgy processing, J. King Saud Univ.-Eng. Sci., 29(2017), p. 295.
|
[21] |
I. Estrada-Guel, C. Carreño-Gallardo, D.C. Mendoza-Ruiz, M. Miki-Yoshida, E. Rocha-Rangel, and R. Martínez-Sánchez, Graphite nanoparticle dispersion in 7075 aluminum alloy by means of mechanical alloying, J. Alloys Compd., 483(2009), No. 1-2, p. 173.
|