Levent Kartal, Mehmet Barış Daryal, Güldem Kartal Şireli, and Servet Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp.1258-1265. https://dx.doi.org/10.1007/s12613-019-1867-9
Cite this article as: Levent Kartal, Mehmet Barış Daryal, Güldem Kartal Şireli, and Servet Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp.1258-1265. https://dx.doi.org/10.1007/s12613-019-1867-9
Research Article

One-step electrochemical reduction of stibnite concentrate in molten borax

Author Affilications
Funds: 

letmeleri A.S for supplying stibnite concentrate.

y İ

The authors would like to thank Eti Bakı

r Halı

ş

  • In this study, antimony production from a stibnite concentrate (Sb2S3) was performed in one step using a molten salt electrolysis method and borax as an electrolyte. Electrochemical reduction of the stibnite concentrate was performed at 800℃ under galvanostatic conditions and explained in detail by the reactions and intermediate compounds formed in the borax. The effects of current density (100-800 mA·cm-2) and electrolysis time (10-40 min) on cathodic current efficiency and antimony yields were systematically investigated. During the highest current efficiency, which was obtained at 600 mA·cm-2, direct metal production was possible with 62% cathodic current efficiency and approximately 6 kWh/kg energy consumption. At the end of the 40-min electrolysis duration at 600 mA·cm-2 current density, antimony reduction reached 30.7 g and 99% of the antimony fed to the cell was obtained as metal.
  • M. Şahin and H. Kaya, Mechanical properties of directionally solidified lead-antimony alloys, Int. J. Miner. Metall. Mater., 18(2011), p. 582.
    Y.H. Zhao, X.B. Wang, X.H. Du, and C. Wang, Effects of Sb and heat treatment on the microstructure of Al–15.5wt%Mg2Si alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 653.
    J. Xie, W.T. Song, G.S. Cao, and X.B. Zhao, One-pot synthesis of Sb–Fe–carbon-fiber composites with in situ catalytic growth of carbon fibers, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 542.
    C.G. Anderson, The metallurgy of antimony, Geochemistry, 72(2012), p. 3.
    C. G. Anderson, SME Mineral Processing and Extractive Metallurgy Handbook: Antimony Production and Commodites, R. C. Dunne, S. K. Kawatra, C. A. Young, eds., Society for Mining, Metallurgy and Exploration, Englewood, 2019, p. 1557.
    R.S. Multani, T. Feldmann, and G.P. Demopoulos, Antimony in the metallurgical industry: A review of its chemistry and environmental stabilization options, Hydrometallurgy, 164(2016), p. 141.
    Y. Li, Y.M. Chen, H.T. Xue, C.B. Tang, S.H. Yang, and M.T. Tang, One-step extraction of antimony in low temperature from stibnite concentrate using iron oxide as sulfur-fixing agent, Metals, 6(2016), No. 7, p. 153.
    L.G. Ye, C.B. Tang, Y.M. Chen, S.H. Yang, J.G. Yang, and W.H. Zhang, One-step extraction of antimony from low-grade stibnite in sodium carbonate-sodium chloride binary molten salt, J. Clean. Prod., 93(2015), p. 134.
    G.M. Li, D.H. Wang, X.B. Jin, and G.Z. Chen, Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission, Electrochem. Commun., 9(2007), No. 8, p. 1951.
    A. Vignes, Extractive Metallurgy 3: Molten Salt Electrolysis Operations, John Wiley & Sons Inc., New Jersey, 2013, p. 286.
    S. Sokhanvaran, S.K. Lee, G. Lambotte, and A. Allanore, Electrochemistry of molten sulfides: Copper extraction from BaS–Cu2S, J. Electrochem. Soc., 163(2016), p. 115.
    M.S. Tan, R. He, Y.T. Yuan, Z.Y. Wang, and X.B. Jin, Electrochemical sulfur removal from chalcopyrite in molten NaCl–KCl, Electrochim. Acta, 213(2016), p. 148.
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), p. 361.
    Z.Q. Li, L.Y. Ru, C.G. Bai, N. Zhang, and H.H. Wang, Effect of sintering temperature on the electrolysis of TiO2, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 636.
    S.L. Wang, S.C. Li, L.F. Wan, and C.H. Wang, Electro-deoxidation of V2O3 in molten CaCl2–NaCl–CaO, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 212.
    P.V. Suneesh, T.G. Satheesh Babu, and T. Ramachandran, Electrodeposition of aluminium and aluminium-copper alloys from a room temperature ionic liquid electrolyte containing aluminium chloride and triethylamine hydrochloride, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 909.
    J.X. Song, Q.Y. Wang, G.J. Hu, X.B. Zhu, S.Q. Jiao, and H.M. Zhu, Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl–KCl melt, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 660.
    H.P. Gao, M.S. Tan, L.B. Rong, Z.Y. Wang, J.J. Peng, X.B. Jin, and G.Z. Chen, Preparation of Mo nanopowders through electroreduction of solid MoS2 in molten KCl–NaCl, Phys. Chem. Chem. Phys., 16(2014), No. 36, p. 19514.
    N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki, Reduction of TiS2 by OS process in CaCl2 melt, ECS Trans., 75(2013), No. 15, p. 507.
    T. Matsuzaki, S. Natsui, T. Kikuchi, and R.O. Suzuki, Electrolytic reduction of V3S4 in molten CaCl2, Mater. Trans., 58(2017), No. 3, p. 371.
    Y. Xiao, D.W. Plas, J. Bohte, S.C. Lans, A. van Sandwijk, and M.A. Reuter, Electrowinning Al from Al2S3 in molten salt, J. Electrochem. Soc., 154(2007), No. 6, p. 334.
    T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng, and G.Z. Chen, Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl–KCl, Electrochem. Commun., 13(2011), No. 12, p. 1492.
    X.L. Ge, X.D. Wang, and S. Seetharaman, Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl, Electrochim. Acta, 54(2009), No. 18, p. 4397.
    X.L. Ge and S. Seetharaman, The salt extraction process – a novel route for metal extraction Part 2— Cu/Fe extraction from copper oxide and sulphides, Miner. Process. Extr. Metall., 119(2010), No. 2, p. 93.
    J.K. Qu, H.W. Xie, Q.S. Song, Z.Q. Ning, H.J. Zhao, and H.Y. Yin, Electrochemical desulfurization of solid copper sulfides in strongly alkaline solutions, Electrochem. Commun., 92(2018), p. 14.
    H. Xie, J. Qu, Z. Ning, B. Li, Q. Song, H. Zhao, and H. Yin, Electrochemical Co-desulfurization-deoxidation of low-grade nickel-copper matte in molten salts, J. Electrochem. Soc., 165(2018), No. 11, p. 578.
    D. Wang, C.Y. Lu, X.L. Zou, K. Zheng, Z.F. Zhou, and X.G. Lu, Electrolysis of converter matte in molten CaCl2–NaCl, J. Mater. Sci. Chem. Eng., 6(2018), No. 1, art. No. 82412.
    J.G. Yang, S.H. Yang, and C.B. Tang, The membrane electrowinning separation of antimony from a stibnite concentrate, Metall. Mater. Trans. B, 41(2010), No. 3, p. 527.
    T. Yanagase and G. Derge, Electrochemical characteristics of melts in the Sb–Sb2S3 system, J. Electrochem. Soc., 103(1956), No. 5, p. 303.
    H.Y. Yin, B. Chung, and D.R. Sadoway, Electrolysis of a molten semiconductor, Nat. Commun., 7(2016), art. No. 12584.
    J.K. Qu, X.Y. Li, H.W. Xie, Z.Q. Ning, Q.S. Song, H.J. Zhao, and H.Y. Yin, Electrochemical reduction of solid lead and antimony sulfides in strong alkaline solutions, J. Electrochem. Soc., 166(2019), No. 2, p. 62.
    F. Colom and M. de la Cruz, Antimony electrowinning from molten sulphide, Electrochim. Acta, 14(1969), No. 3, p. 217.
    S.A. Awe and Å. Sandström, Electrowinning of antimony from model sulphide alkaline solutions, Hydrometallurgy, 137(2013), p. 60.
    Y.L. He, R.D. Xu, S.W. He, H.S. Chen, K. Li, Y. Zhu, and Q.F. Shen, Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 288.
  • Cited by

    Periodical cited type(13)

    1. Kai Liang, Baozhong Ma, Yarui An, et al. A Summary of Smelting and Secondary Recovery Process of Antimony. JOM, 2025. DOI:10.1007/s11837-024-07115-y
    2. Renjie Tan, Jia Yang, Dachun Liu, et al. The mechanism study and low-carbon analysis of biomass pyrolysis enhanced antimony oxide reduction. Separation and Purification Technology, 2025, 355: 129515. DOI:10.1016/j.seppur.2024.129515
    3. Lingbo Li, Li Zhou, Chenhui Liu, et al. Preparation of Antimony Metal by Carbothermal Reduction of Antimony Oxide Powder in a Microwave Field: Mechanism and Process. Journal of Sustainable Metallurgy, 2024, 10(2): 603. DOI:10.1007/s40831-024-00809-2
    4. Qiang Zhu, Jianguang Yang, Tianxiang Nan, et al. Antimony Extraction from Sulfide Concentrates by Direct Electrolytic Desulfurization in Molten Salt. ACS Sustainable Chemistry & Engineering, 2024, 12(20): 7844. DOI:10.1021/acssuschemeng.4c00891
    5. Qiang ZHU, Jian-guang YANG, Chao-bo TANG, et al. One-step electrolytic reduction desulfurization of Sb2S3 in different molten salts. Transactions of Nonferrous Metals Society of China, 2023, 33(7): 2206. DOI:10.1016/S1003-6326(23)66253-3
    6. Jinglong Liang, Dongbin Wang, Le Wang, et al. Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts. International Journal of Minerals, Metallurgy and Materials, 2022, 29(3): 473. DOI:10.1007/s12613-020-2144-7
    7. Chang Liu, Jinglong Liang, Hui Li, et al. The Electrochemical Reduction Mechanism of ZnFe2O4 in NaCl-CaCl2 Melts. Crystals, 2021, 11(8): 925. DOI:10.3390/cryst11080925
    8. Jing Zhou, Dan-dan Nie, Xian-bo Jin, et al. Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1703. DOI:10.1007/s12613-020-2050-z
    9. Xiao-li Xi, Ming Feng, Li-wen Zhang, et al. Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1599. DOI:10.1007/s12613-020-2175-0
    10. Dong-hua Tian, Zhen-chao Han, Ming-yong Wang, et al. Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1687. DOI:10.1007/s12613-020-2026-z
    11. Dong Wang, Sheng Pang, Chun-yue Zhou, et al. Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1618. DOI:10.1007/s12613-020-2165-2
    12. Levent Kartal, Mehmet Barış Daryal, Servet Timur. A New Approach for Cu and Fe/FexB Production from Chalcopyrite by Molten Salt Electrolysis. Journal of Sustainable Metallurgy, 2020, 6(4): 751. DOI:10.1007/s40831-020-00312-4
    13. Bo Wang, Chao-yi Chen, Jun-qi Li, et al. Production of Fe–Ti Alloys from Mixed Slag Containing Titanium and Fe2O3 via Direct Electrochemical Reduction in Molten Calcium Chloride. Metals, 2020, 10(12): 1611. DOI:10.3390/met10121611

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (677) PDF downloads (17) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return