Cite this article as: | Levent Kartal, Mehmet Barış Daryal, Güldem Kartal Şireli, and Servet Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp.1258-1265. https://dx.doi.org/10.1007/s12613-019-1867-9 |
M. Şahin and H. Kaya, Mechanical properties of directionally solidified lead-antimony alloys, Int. J. Miner. Metall. Mater., 18(2011), p. 582.
|
Y.H. Zhao, X.B. Wang, X.H. Du, and C. Wang, Effects of Sb and heat treatment on the microstructure of Al–15.5wt%Mg2Si alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 653.
|
J. Xie, W.T. Song, G.S. Cao, and X.B. Zhao, One-pot synthesis of Sb–Fe–carbon-fiber composites with in situ catalytic growth of carbon fibers, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 542.
|
C.G. Anderson, The metallurgy of antimony, Geochemistry, 72(2012), p. 3.
|
C. G. Anderson, SME Mineral Processing and Extractive Metallurgy Handbook: Antimony Production and Commodites, R. C. Dunne, S. K. Kawatra, C. A. Young, eds., Society for Mining, Metallurgy and Exploration, Englewood, 2019, p. 1557.
|
R.S. Multani, T. Feldmann, and G.P. Demopoulos, Antimony in the metallurgical industry: A review of its chemistry and environmental stabilization options, Hydrometallurgy, 164(2016), p. 141.
|
Y. Li, Y.M. Chen, H.T. Xue, C.B. Tang, S.H. Yang, and M.T. Tang, One-step extraction of antimony in low temperature from stibnite concentrate using iron oxide as sulfur-fixing agent, Metals, 6(2016), No. 7, p. 153.
|
L.G. Ye, C.B. Tang, Y.M. Chen, S.H. Yang, J.G. Yang, and W.H. Zhang, One-step extraction of antimony from low-grade stibnite in sodium carbonate-sodium chloride binary molten salt, J. Clean. Prod., 93(2015), p. 134.
|
G.M. Li, D.H. Wang, X.B. Jin, and G.Z. Chen, Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission, Electrochem. Commun., 9(2007), No. 8, p. 1951.
|
A. Vignes, Extractive Metallurgy 3: Molten Salt Electrolysis Operations, John Wiley & Sons Inc., New Jersey, 2013, p. 286.
|
S. Sokhanvaran, S.K. Lee, G. Lambotte, and A. Allanore, Electrochemistry of molten sulfides: Copper extraction from BaS–Cu2S, J. Electrochem. Soc., 163(2016), p. 115.
|
M.S. Tan, R. He, Y.T. Yuan, Z.Y. Wang, and X.B. Jin, Electrochemical sulfur removal from chalcopyrite in molten NaCl–KCl, Electrochim. Acta, 213(2016), p. 148.
|
G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), p. 361.
|
Z.Q. Li, L.Y. Ru, C.G. Bai, N. Zhang, and H.H. Wang, Effect of sintering temperature on the electrolysis of TiO2, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 636.
|
S.L. Wang, S.C. Li, L.F. Wan, and C.H. Wang, Electro-deoxidation of V2O3 in molten CaCl2–NaCl–CaO, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 212.
|
P.V. Suneesh, T.G. Satheesh Babu, and T. Ramachandran, Electrodeposition of aluminium and aluminium-copper alloys from a room temperature ionic liquid electrolyte containing aluminium chloride and triethylamine hydrochloride, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 909.
|
J.X. Song, Q.Y. Wang, G.J. Hu, X.B. Zhu, S.Q. Jiao, and H.M. Zhu, Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl–KCl melt, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 660.
|
H.P. Gao, M.S. Tan, L.B. Rong, Z.Y. Wang, J.J. Peng, X.B. Jin, and G.Z. Chen, Preparation of Mo nanopowders through electroreduction of solid MoS2 in molten KCl–NaCl, Phys. Chem. Chem. Phys., 16(2014), No. 36, p. 19514.
|
N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki, Reduction of TiS2 by OS process in CaCl2 melt, ECS Trans., 75(2013), No. 15, p. 507.
|
T. Matsuzaki, S. Natsui, T. Kikuchi, and R.O. Suzuki, Electrolytic reduction of V3S4 in molten CaCl2, Mater. Trans., 58(2017), No. 3, p. 371.
|
Y. Xiao, D.W. Plas, J. Bohte, S.C. Lans, A. van Sandwijk, and M.A. Reuter, Electrowinning Al from Al2S3 in molten salt, J. Electrochem. Soc., 154(2007), No. 6, p. 334.
|
T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng, and G.Z. Chen, Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl–KCl, Electrochem. Commun., 13(2011), No. 12, p. 1492.
|
X.L. Ge, X.D. Wang, and S. Seetharaman, Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl, Electrochim. Acta, 54(2009), No. 18, p. 4397.
|
X.L. Ge and S. Seetharaman, The salt extraction process – a novel route for metal extraction Part 2— Cu/Fe extraction from copper oxide and sulphides, Miner. Process. Extr. Metall., 119(2010), No. 2, p. 93.
|
J.K. Qu, H.W. Xie, Q.S. Song, Z.Q. Ning, H.J. Zhao, and H.Y. Yin, Electrochemical desulfurization of solid copper sulfides in strongly alkaline solutions, Electrochem. Commun., 92(2018), p. 14.
|
H. Xie, J. Qu, Z. Ning, B. Li, Q. Song, H. Zhao, and H. Yin, Electrochemical Co-desulfurization-deoxidation of low-grade nickel-copper matte in molten salts, J. Electrochem. Soc., 165(2018), No. 11, p. 578.
|
D. Wang, C.Y. Lu, X.L. Zou, K. Zheng, Z.F. Zhou, and X.G. Lu, Electrolysis of converter matte in molten CaCl2–NaCl, J. Mater. Sci. Chem. Eng., 6(2018), No. 1, art. No. 82412.
|
J.G. Yang, S.H. Yang, and C.B. Tang, The membrane electrowinning separation of antimony from a stibnite concentrate, Metall. Mater. Trans. B, 41(2010), No. 3, p. 527.
|
T. Yanagase and G. Derge, Electrochemical characteristics of melts in the Sb–Sb2S3 system, J. Electrochem. Soc., 103(1956), No. 5, p. 303.
|
H.Y. Yin, B. Chung, and D.R. Sadoway, Electrolysis of a molten semiconductor, Nat. Commun., 7(2016), art. No. 12584.
|
J.K. Qu, X.Y. Li, H.W. Xie, Z.Q. Ning, Q.S. Song, H.J. Zhao, and H.Y. Yin, Electrochemical reduction of solid lead and antimony sulfides in strong alkaline solutions, J. Electrochem. Soc., 166(2019), No. 2, p. 62.
|
F. Colom and M. de la Cruz, Antimony electrowinning from molten sulphide, Electrochim. Acta, 14(1969), No. 3, p. 217.
|
S.A. Awe and Å. Sandström, Electrowinning of antimony from model sulphide alkaline solutions, Hydrometallurgy, 137(2013), p. 60.
|
Y.L. He, R.D. Xu, S.W. He, H.S. Chen, K. Li, Y. Zhu, and Q.F. Shen, Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 288.
|
1. | Kai Liang, Baozhong Ma, Yarui An, et al. A Summary of Smelting and Secondary Recovery Process of Antimony. JOM, 2025. DOI:10.1007/s11837-024-07115-y |
2. | Renjie Tan, Jia Yang, Dachun Liu, et al. The mechanism study and low-carbon analysis of biomass pyrolysis enhanced antimony oxide reduction. Separation and Purification Technology, 2025, 355: 129515. DOI:10.1016/j.seppur.2024.129515 |
3. | Lingbo Li, Li Zhou, Chenhui Liu, et al. Preparation of Antimony Metal by Carbothermal Reduction of Antimony Oxide Powder in a Microwave Field: Mechanism and Process. Journal of Sustainable Metallurgy, 2024, 10(2): 603. DOI:10.1007/s40831-024-00809-2 |
4. | Qiang Zhu, Jianguang Yang, Tianxiang Nan, et al. Antimony Extraction from Sulfide Concentrates by Direct Electrolytic Desulfurization in Molten Salt. ACS Sustainable Chemistry & Engineering, 2024, 12(20): 7844. DOI:10.1021/acssuschemeng.4c00891 |
5. | Qiang ZHU, Jian-guang YANG, Chao-bo TANG, et al. One-step electrolytic reduction desulfurization of Sb2S3 in different molten salts. Transactions of Nonferrous Metals Society of China, 2023, 33(7): 2206. DOI:10.1016/S1003-6326(23)66253-3 |
6. | Jinglong Liang, Dongbin Wang, Le Wang, et al. Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts. International Journal of Minerals, Metallurgy and Materials, 2022, 29(3): 473. DOI:10.1007/s12613-020-2144-7 |
7. | Chang Liu, Jinglong Liang, Hui Li, et al. The Electrochemical Reduction Mechanism of ZnFe2O4 in NaCl-CaCl2 Melts. Crystals, 2021, 11(8): 925. DOI:10.3390/cryst11080925 |
8. | Jing Zhou, Dan-dan Nie, Xian-bo Jin, et al. Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1703. DOI:10.1007/s12613-020-2050-z |
9. | Xiao-li Xi, Ming Feng, Li-wen Zhang, et al. Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1599. DOI:10.1007/s12613-020-2175-0 |
10. | Dong-hua Tian, Zhen-chao Han, Ming-yong Wang, et al. Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1687. DOI:10.1007/s12613-020-2026-z |
11. | Dong Wang, Sheng Pang, Chun-yue Zhou, et al. Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1618. DOI:10.1007/s12613-020-2165-2 |
12. | Levent Kartal, Mehmet Barış Daryal, Servet Timur. A New Approach for Cu and Fe/FexB Production from Chalcopyrite by Molten Salt Electrolysis. Journal of Sustainable Metallurgy, 2020, 6(4): 751. DOI:10.1007/s40831-020-00312-4 |
13. | Bo Wang, Chao-yi Chen, Jun-qi Li, et al. Production of Fe–Ti Alloys from Mixed Slag Containing Titanium and Fe2O3 via Direct Electrochemical Reduction in Molten Calcium Chloride. Metals, 2020, 10(12): 1611. DOI:10.3390/met10121611 |