Cite this article as: |
Jian-guo Liu, Long-zhe Jin, Jia-ying Wang, Sheng-nan Ou, and Tian-yang Wang, Co-influencing mechanisms of physicochemical properties of blasting dust in iron mines on its wettability, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1080-1091. https://doi.org/10.1007/s12613-019-1874-x |
Long-zhe Jin E-mail: lzjin@ustb.edu.cn
[1] |
M. Akbari, G. Lashkaripour, A.Y. Bafghi, and M. Ghafoori, Blastability evaluation for rock mass fragmentation in Iran central iron ore mines, Int. J. Min. Sci. Technol., 25(2015), No. 1, p. 59.
|
[2] |
J.G. Liu, L.Z. Jin, J.Y. Wang, S.N. Ou, J.Z. Guo, and T.Y. Wang, Micromorphology and physicochemical properties of hydrophobic blasting dust in iron mines, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 665.
|
[3] |
J. Csavina, J. Field, M.P. Taylor, S. Gao, A. Landázuri, E.A. Betterton, and A.E. Sáez, A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations, Sci. Total Environ., 433(2012), p. 58.
|
[4] |
B. Wang, C. Wu, L.G. Kang, G. Reniers, and L. Huang, Work safety in China's thirteenth five-year plan period (2016-2020):Current status, new challenges and future tasks, Saf. Sci., 104(2018), p. 164.
|
[5] |
P. Gonzales, O. Felix, C. Alexander, E. Lutz, W. Ela, and A.E. Sáez, Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits, J. Hazard. Mater., 280(2014), p. 619.
|
[6] |
Y.S. Sun, Y.X. Han, Y.F. Li, and Y.J. Li, Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 123.
|
[7] |
G. Zhou, B. Feng, W.J. Yin, and J.Y. Wang, Numerical simulations on airflow-dust diffusion rules with the use of coal cutter dust removal fans and related engineering applications in a fully-mechanized coal mining face, Powder Technol., 339(2018), p. 354.
|
[8] |
G. Xu, K.D. Luxbacher, S. Ragab, J.L. Xu, and X.H. Ding, Computational fluid dynamics applied to mining engineering:A review, Int. J. Min. Reclam. Environ., 31(2017), No. 4, p. 251.
|
[9] |
M.P. Taylor, S.A. Mould, L.J. Kristensen, and M. Rouillon, Environmental arsenic, cadmium and lead dust emissions from metal mine operations:Implications for environmental management, monitoring and human health, Environ. Res., 135(2014), p. 296.
|
[10] |
S.B. Yang, W. Nie, S.S. Lv, Z.Q. Liu, H. Peng, X. Ma, P. Cai, and C.W. Xu, Effects of spraying pressure and installation angle of nozzles on atomization characteristics of external spraying system at a fully-mechanized mining face, Powder Technol., 343(2019), p. 754.
|
[11] |
Z.L. Xi, M.M. Jiang, J.J. Yang, and X. Tu, Experimental study on advantages of foam-sol in coal dust control, Process Saf. Environ. Prot., 92(2014), No. 6, p. 637.
|
[12] |
G. Xu, Y.P. Chen, J. Eksteen, and J.L. Xu, Surfactant-aided coal dust suppression:A review of evaluation methods and influencing factors, Sci. Total Environ., 639(2018), p. 1060.
|
[13] |
D. Omane, W.V. Liu, and Y. Pourrahimian, Comparison of chemical suppressants under different atmospheric temperatures for the control of fugitive dust emission on mine haul's roads, Atmos. Pollut. Res., 9(2018), No. 3, p. 561.
|
[14] |
Q. Zhou, B.T. Qin, J. Wang, H.T. Wang, and F. Wang, Effects of preparation parameters on the wetting features of surfactant-magnetized water for dust control in Luwa mine, China, Powder Technol., 326(2018), p. 7.
|
[15] |
Y.P. Chen, G. Xu, J.X. Huang, J. Eksteen, X.F. Liu, and Z.D. Zhao, Characterization of coal particles wettability in surfactant solution by using four laboratory static tests, Colloids Surf. A, 567(2019), p. 304.
|
[16] |
V.K. Kollipara, Y.P. Chugh, and K. Mondal, Physical, mineralogical and wetting characteristics of dusts from Interior Basin coal mines, Int. J. Coal Geol., 127(2014), p. 75.
|
[17] |
Q.Z. Li, B.Q. Lin, S. Zhao, and H.M. Dai, Surface physical properties and its effects on the wetting behaviors of respirable coal mine dust, Powder Technol., 233(2013), p. 137.
|
[18] |
J.G.M.S. Machado, F.A. Brehm, C.A.M. Moraes, C.A. dos Santos, A.C.F. Vilela, and J.B.M. da Cunha, Chemical, physical, structural and morphological characterization of the electric arc furnace dust, J. Hazard. Mater. 136(2006), No. 3, p. 953.
|
[19] |
J.B. Zhu and H. Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 309.
|
[20] |
J. Yang, X.K. Wu, J.G. Gao, and G.P. Li, Surface characteristics and wetting mechanism of respirable coal dust, Min. Sci. Technol., 20(2010), No. 3, p. 365.
|
[21] |
X.F. Liu, D.Z. Song, X.Q. He, Z.P. Wang, M.R. Zeng, and L.K. Wang, Quantitative analysis of coal nanopore characteristics using atomic force microscopy, Powder Technol., 346(2019), p. 332.
|
[22] |
X.Q. He, X.F. Liu, D.Z. Song, and B.S. Nie, Effect of microstructure on electrical property of coal surface, Appl. Surf. Sci., 483(2019), p. 713.
|
[23] |
C.H. Xu, D.M. Wang, H.T. Wang, H.H. Xin, L.Y. Ma, X.L. Zhu, Y. Zhang, and Q.G. Wang, Effects of chemical properties of coal dust on its wettability, Powder Technol., 318(2017), p. 33.
|
[24] |
G. Zhou, C.C. Xu, W.M. Cheng, Q. Zhang, and W. Nie, Effects of oxygen element and oxygen-containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment, J. Anal. Methods Chem., 2015, art. No. 467242.
|
[25] |
F.G. Fujiwara, D.R. Gómez, L. Dawidowski, P. Perelman, and A. Faggi, Metals associated with airborne particulate matter in road dust and tree bark collected in a megacity (Buenos Aires, Argentina), Ecol. Indic., 11(2011), No. 2, p. 240.
|
[26] |
H.T. Wang, L. Zhang, D.M. Wang, and X.X. He, Experimental investigation on the wettability of respirable coal dust based on infrared spectroscopy and contact angle analysis, Adv. Powder. Technol., 28(2017), No. 12, p. 3130.
|
[27] |
X.F. Liu, D.Z. Song, X.Q. He, B.S. Nie, and L.K. Wang, Insight into the macromolecular structural differences between hard coal and deformed soft coal, Fuel, 245(2019), p. 188.
|
[28] |
G. Oberdörster, E. Oberdörster, and J. Oberdörster, Nanotoxicology:An emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113(2005), No. 7, p. 823.
|
[29] |
P.L. Walker, E.E. Petersen, and C.C. Wright, Surface active agent phenomena in dust abatement, Ind. Eng. Chem., 44(1952), No. 10, p. 2389.
|
[30] |
D.H. Everett and F.S. Stone, The Structure and Properties of Porous Materials, Butterworths, London, 1958.
|
[31] |
Y. Tian and L. Jiang, Wetting:Intrinsically robust hydrophobicity, Nat. Mater., 12(2013), No. 4, p. 291.
|
[32] |
X.F. Liu, B.S. Nie, W.X. Wang, Z.P. Wang, and L. Zhang, The use of AFM in quantitative analysis of pore characteristics in coal and coal-bearing shale, Mar. Pet. Geol., 105(2019), p. 331.
|
[33] |
X.F. Liu, D.Z. Song, X.Q. He, Z.P. Wang, M.R. Zeng, and L.K. Wang, Nanopore structure of deep-burial coals explored by AFM, Fuel, 246(2019), p. 9.
|
[34] |
T. Xu, X.J. Ning, G.W. Wang, W. Liang, J.L. Zhang, Y.J. Li, H.Y. Wang, and C.H. Jiang, Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1412.
|