Cite this article as: |
Richard Espiritu and Alberto Amorsolo Jr., Fabrication and characterization of Cu-Zn-Sn shape memory alloys via an electrodeposition-annealing route, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp. 1436-1449. https://doi.org/10.1007/s12613-019-1886-6 |
Richard Espiritu E-mail: richard.espiritu@coe.upd.edu.ph
[1] |
K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, United Kingdom, 1999.
|
[2] |
D.C. Lagoudas, Shape Memory Alloys:Modeling and Engineering Applications, Springer Science & Business Media, New York, 2008, p. 1.
|
[3] |
J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des., 56(2014), p. 1078.
|
[4] |
W.M. Huang, Z. Ding, C.C. Wang, J. Wei, Y. Zhao, and H. Purnawali, Shape memory materials, Mater. Today, 13(2010), No. 7-8, p. 54.
|
[5] |
R.A. Ahmed, A comparative study on the corrosion performance of Ni47Ti49Co4 and Ni51Ti49 shape memory alloys in simulated saliva solution for dental applications, Acta Metall. Sin. (Engl. Lett.), 29(2016), No. 11, p. 1001.
|
[6] |
L. Petrini and F. Migliavacca, Biomedical applications of shape memory alloys, J. Metall., 2011(2011), art No. 501483
|
[7] |
D. Quan and X. Hai, Shape memory alloy in various aviation field, Procedia Eng., 99(2015), p. 1241.
|
[8] |
S. Wang, K. Tsuchiya, L. Wang, and M. Umemoto, Deformation mechanism and stabilization of martensite in TiNi shape memory alloy, J. Mater. Sci. Technol., 26(2010), No. 10, p. 936.
|
[9] |
B.C. Zhang, J. Chen, and C. Coddet, Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder, J. Mater. Sci. Technol., 29(2013), No. 9, p. 863.
|
[10] |
H.J. Jiang, S.S. Cao, C.B. Ke, X.P. Ma, and X.P. Zhang, Fine-grained bulk NiTi shape memory alloy fabricated by rapid solidification process and its mechanical properties and damping performance, J. Mater. Sci. Technol., 29(2013), No. 9, p. 855.
|
[11] |
C.Y. Chung and C.W.H. Lam, Cu-based shape memory alloys with enhanced thermal stability and mechanical properties, Mater. Sci. Eng. A, 273-275(1999), p. 622.
|
[12] |
R. Dasgupta, A look into Cu-based shape memory alloys:Present scenario and future prospects, J. Mater. Res., 29(2014), No. 16, p. 1681.
|
[13] |
E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, and X.J. Gao, Shape memory alloys, Part I:General properties and modeling of single crystals, Mech. Mater., 38(2006), No. 5-6, p. 391.
|
[14] |
S. Ozgen and C. Tatar, Thermoelastic transition kinetics of a gamma irradiated CuZnAl shape memory alloy, Met. Mater. Int., 18(2012), No. 6, p. 909.
|
[15] |
H. Funakubo and J.B. Kennedy, Shape Memory Alloys, Gordon and Breach Science Publishers, New York, 1987.
|
[16] |
M. Ahlers, Martensite and equilibrium phases in CuZn and CuZnAl alloys, Prog. Mater. Sci., 30(1986), No. 3, p. 135.
|
[17] |
D.Y. Li, S.L. Zhang, W.B. Liao, G.H. Geng, and Y. Zhang, Superelasticity of Cu-Ni-Al shape memory fibers prepared by melt extraction technique, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 928.
|
[18] |
Z.G. Wang, X.T. Zu, and Y.Q. Fu, Review on the temperature memory effect in shape memory alloys, Int. J. Smart Nano Mater., 2(2011), No. 3, p. 101.
|
[19] |
S. Miyazaki and K. Otsuka, Development of shape memory alloys, ISIJ Int., 29(1989), No. 5, p. 353.
|
[20] |
U. Sari, Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 192.
|
[21] |
G.B. Narasimha and S.M. Murigendrappa, Effect of zirconium on the properties of polycrystalline Cu-Al-Be shape memory alloy, Mater. Sci. Eng. A, 755(2019), p. 211.
|
[22] |
X. Hu, Y.F. Zheng, Y.X. Tong, F. Chen, B. Tian, H.M. Zhou, and L. Li, High damping capacity in a wide temperature range of a compositionally graded TiNi alloy prepared by electroplating and diffusion annealing, Mater. Sci. Eng. A, 623(2015), p. 1.
|
[23] |
P. Fricoteaux and C. Rousse, Nanowires of Cu-Zn and Cu-Zn-Al shape memory alloys elaborated via electrodeposition in ionic liquid, J. Electroanal. Chem., 733(2014), p. 53.
|
[24] |
İ.H. Karahan and R. Özdemir, Effect of Cu concentration on the formation of Cu1-xZnx shape memory alloy thin films, Appl. Surf. Sci., 318(2014), p. 100.
|
[25] |
S. Pourkhorshidi, N. Parvin, M.S. Kenevisi, M. Naeimi, and H.E. Khaniki, A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders, Mater. Sci. Eng. A, 556(2012), p. 658.
|
[26] |
S.H. Kang, S.G. Hur, H.W. Lee, and T.H. Nam, Microstructures and transformation behavior of Ti-Ni-Cu shape memory alloy powders fabricated by ball milling method, Met. Mater., 6(2000), No. 4, p. 381.
|
[27] |
T.H. Nam and S.H. Kang, Effect of ball milling conditions on the microstructure and the transformation behavior of Ti-Ni and Ti-Ni-Cu shape memory alloy powders, Met. Mater. Int., 8(2002), No. 2, p. 145.
|
[28] |
K. Mehrabi, M. Brunčko, A.C. Kneissl, M. Čolič, D. Stamenković, J. Ferčec, I. Anžel, and R. Rudolf, Characterisation of melt spun Ni-Ti shape memory Ribbons' microstructure, Met. Mater. Int., 18(2012), No. 3, p. 413.
|
[29] |
M. Izadinia and K. Dehghani, Microstructural evolution and mechanical properties of nanostructured Cu-Al-Ni shape memory alloys, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 333.
|
[30] |
A. Agrawal and R.K. Dube, Methods of fabricating Cu-Al-Ni shape memory alloys, J. Alloys Compd., 750(2018), p. 235.
|
[31] |
M. Schetky, Intermetallic Compounds, John Wiley and Sons, New York, 1994, p. 529.
|
[32] |
M. Schlesinger and M. Paunovic, Fundamentals of Electrochemical Deposition, 2nd Ed., Wiley Interscience, New Jersey, 2006.
|
[33] |
E.A. Brandes and G. Brook, Smithells Metals Reference Book, 7th Ed., Butterworth-Heinemann, Oxford, 1992.
|
[34] |
R.D.V. Espiritu and A.V. Amorsolo Jr., SEM-EDX analysis of intermetallic phases in a Cu-Zn-Sn shape memory alloy, Microsc. Anal., 24(2010), No. 6, p. 15.
|
[35] |
M.S. Suh, C.J. Park, and H.S. Kwon, Growth kinetics of Cu-Sn intermetallic compounds at the interface of a Cu substrate and 42Sn-58Bi electrodeposits, and the influence of the intermetallic compounds on the shear resistance of solder joints, Mater. Chem. Phys., 110(2008), No. 1, p. 95.
|
[36] |
B.F. Dyson, T.R. Anthony, and D. Turnbull, Interstitial diffusion of copper in tin, J. Appl. Phys., 38(1967), No. 8, p. 3408.
|
[37] |
A. Churakova, D. Gunderov, A. Lukyanov, and N. Nollmann, Transformation of the TiNi alloy microstructure and the mechanical properties caused by repeated B2-B19' martensitic transformations, Acta Metall. Sin. (Engl. Lett.), 28(2015), No. 10, p. 1230.
|
[38] |
H.Y. Kim and S. Miyazaki, Ni-Free Ti-Based Shape Memory Alloys, Butterworth-Heinemann, Oxford, 2018, p. 193.
|
[39] |
R.D.V. Espiritu and A.V. Amorsolo Jr., DSC analysis of Cu-Zn-Sn shape memory alloy fabricated via electrodeposition route, J. Therm. Anal. Calorim., 107(2012), No. 2, p. 483.
|
[40] |
T.W. Liu, Y.J. Zheng, and L.S. Cui, Transformation sequence rule of martensite plates and temperature memory effect in shape memory alloys, Acta Metall. Sin. (Engl. Lett.), 28(2015), No. 10, p. 1286.
|