Cite this article as: |
Peng Li, Fen-hua Ren, Mei-feng Cai, Qi-feng Guo, Hao-fei Wang, and Kang Liu, Investigating the mechanical and acoustic emission characteristics of brittle failure around a circular opening under uniaxial loading, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp. 1217-1230. https://doi.org/10.1007/s12613-019-1887-5 |
Fen-hua Ren E-mail: renfh_2001@163.com
[1] |
R. Pusch and R. Stanfors, The zone of disturbance around blasted tunnels at depth, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 29(1992), No. 5, p. 447.
|
[2] |
M. Sagong, D. Park, J. Yoo, and J.S. Lee, Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression, Int. J. Rock Mech. Min. Sci., 48(2011), No. 7, p. 1055.
|
[3] |
C.D. Martini, R.S. Read, and J.B. Martino, Observations of brittle failure around a circular test tunnel, Int. J. Rock Mech. Min. Sci., 34(1997), No. 7, p. 1065.
|
[4] |
H. Kratzsch, Mining Subsidence Engineering, Springer, Berlin, 1983, p. 92.
|
[5] |
A. Fakhimi, F. Carvalho, T. Ishida, and J.F. Labuz, Simulation of failure around a circular opening in rock, Int. J. Rock Mech. Min. Sci., 39(2002), No. 4, p. 507.
|
[6] |
Y.L. Gui, Z.Y. Zhao, C. Zhang, and S.Q. Ma, Numerical investigation of the opening effect on the mechanical behaviours in rocks under uniaxial loading using hybrid continuum-discrete element method, Comput. Geotech., 90(2017), p. 55.
|
[7] |
L. Weng, X.B. Li, A. Taheri, Q.H. Wu, and X.F. Xie, Fracture evolution around a cavity in brittle rock under uniaxial compression and coupled static–dynamic loads, Rock Mech. Rock Eng., 51(2018), No. 2, p. 531.
|
[8] |
R.H. Cao, P. Cao, H. Lin, G.W. Ma, X. Fan, and X.G. Xiong, Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: Experimental studies and particle mechanics approach, Arch. Civ. Mech. Eng., 18(2018), No. 1, p. 198.
|
[9] |
V. Hajiabdolmajid, P.K. Kaiser, and C.D. Martin, Modelling brittle failure of rock, Int. J. Rock Mech. Min. Sci., 39(2002), No. 6, p. 731.
|
[10] |
E. Eberhardt, D. Stead, B. Stimpson, and R.S. Read, Identifying crack initiation and propagation thresholds in brittle rock, Can. Geotech. J., 35(1998), No. 2, p. 222.
|
[11] |
X.G. Zhao, M. Cai, J. Wang, and L.K. Ma, Damage stress and acoustic emission characteristics of the Beishan granite, Int. J. Rock Mech. Min. Sci., 64(2013), p. 258.
|
[12] |
M.Q. You, C.D. Su, and X.S. Li, Study on relation between mechanical properties and longitudinal wave velocities for damaged rock samples, Chin. J. Rock Mech. Eng., 27(2008), No. 3, p. 458.
|
[13] |
Q.H. Wu, M.Q. You, and C.D. Su, Mechanical parameters and their relativity of anisotropy granite, J. Cent. South Univ. Sci. Technol., 46(2015), No. 6, p. 2216.
|
[14] |
H.Q. Zhang, H. Shi, H.W. Jing, Y. Wu, and H. Pu, Numerical study of remote fracturing around a circular opening in rock, Eur. J. Environ. Civ. Eng., 2018.
|
[15] |
S.D. Xu, Y.H. Li, and J.P. Liu, Detection of cracking and damage mechanisms in brittle granites by moment tensor analysis of acoustic emission signals, Acoust. Phys., 63(2017), No. 3, p. 359.
|
[16] |
D.Y. Li, Q.Q. Zhu, Z.L. Zhou, X.B. Li, and P.G. Ranjith, Fracture analysis of marble specimens with a hole under uniaxial compression by digital image correlation, Eng. Fract. Mech., 183(2017), p. 109.
|
[17] |
A. Basu and D.A. Mishra, A method for estimating crack-initiation stress of rock materials by porosity, J. Geol. Soc. India, 84(2014), No. 4, p. 397.
|
[18] |
X.P. Lai, L.H. Wang, and M.F. Cai, Couple analyzing the acoustic emission characters from hard composite rock fracture, J. Univ. Sci. Technol. Beijing, 11(2004), No. 2, p. 97.
|
[19] |
J.L. Pei, W.P. Fei, and J.F. Liu, Spatial evolution and fractal characteristics of natural fractures in marbles under uniaxial compression loading based on the source location technology of acoustic emission, Environ. Earth Sci., 75(2016), No. 9, p. 828.
|
[20] |
X. Wang, Z.J. Wen, Y.J. Jiang, and H. Huang, Experimental study on mechanical and acoustic emission characteristics of rock-like material under non-uniformly distributed loads, Rock Mech. Rock Eng., 51(2018), No. 3, p. 729.
|
[21] |
B.J. Meyer, New Objective Method for the Determination of Crack Initiation Stress Using Acoustic Emission Data, A[Dissertation], Colorado School of Mines, Golden, 2018, p. 23.
|
[22] |
T. Schumacher, New Acoustic Emission Applications in Civil Engineering[Dissertation], Oregon State University, Corvallis, 2010, p. 22.
|
[23] |
Q.Q. Zhu, D.Y. Li, Z.Y. Han, X.B. Li, and Z.L. Zhou, Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression, Int. J. Rock Mech. Min. Sci., 115(2019), p. 33.
|
[24] |
Z.T. Bieniawski, Stability concept of brittle fracture propagation in rock, Eng. Geol., 2(1967), No. 3, p. 149.
|
[25] |
M.V.M.S. Rao and K.J.P. Lakshmi, Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture, Curr. Sci., 89(2005), No. 9, p. 1577.
|
[26] |
L.M. Zhang, S.Q. Ma, M.Y. Ren, S.Q. Jiang, Z.Q. Wang, and J.L. Wang, Acoustic emission frequency and b value characteristics in rock failure process under various confining pressures, Chin. J. Rock Mech. Eng., 34(2015), No. 10, p. 2057.
|
[27] |
X.L. Lei, K. Kusunose, M.V.M.S. Rao, O. Nishizawa, and T. Satoh, Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring, J. Geophys. Res. Solid Earth, 105(2000), No. B3, p. 6127.
|
[28] |
Y.H. Huang, S.Q. Yang, M.R. Hall, W.L. Tian, and P.F. Yin, Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity, Arch. Civ. Mech. Eng., 18(2018), No. 4, p. 1359.
|
[29] |
B.J. Carter, E.Z. Lajtai, and A. Petukhov, Primary and remote fracture around underground cavities, Int. J. Numer. Anal. Methods Geomech., 15(1991), No. 1, p. 21.
|
[30] |
H. Munoz and A. Taheri, Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation, J. Rock Mech. Geotech. Eng., 9(2017), No. 4, p. 599.
|
[31] |
H. Güneyli and T. Rüşen, Effect of length-to-diameter ratio on the unconfined compressive strength of cohesive soil specimens, Bull. Eng. Geol. Environ., 75(2016), No. 2, p. 793.
|