Tian-xing Lu, Cun-guang Chen, Zhi-meng Guo, Pei Li,  and Ming-xing Guo, Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp. 1477-1484. https://doi.org/10.1007/s12613-019-1889-3
Cite this article as:
Tian-xing Lu, Cun-guang Chen, Zhi-meng Guo, Pei Li,  and Ming-xing Guo, Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp. 1477-1484. https://doi.org/10.1007/s12613-019-1889-3
Research Article

Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction

+ Author Affiliations
  • Corresponding authors:

    Cun-guang Chen    E-mail: cgchen@ustb.edu.cn

    Zhi-meng Guo    E-mail: zmguo@ustb.edu.cn

  • Received: 28 June 2019Revised: 22 August 2019Accepted: 30 August 2019
  • Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol-gel method and in-situ hydrogen reduction. The tungsten particles in the Cu matrix were well-dispersed with an average size of approximately 100-200 nm. The addition of nanosized W particles remarkably improves the mechanical properties, while the electrical conductivity did not substantially decrease. The Cu-W composite with 6wt% W has the most comprehensive properties with an ultimate strength of 310 MPa, yield strength of 238 MPa, hardness of HV 108 and electrical conductivity of 90% IACS. The enhanced mechanical property and only a small loss of electrical conductivity demonstrate the potential of this new strategy to prepare W nanoparticle-strengthened Cu composites.
  • loading
  • [1]
    G. Li, B.G. Thomas, and J.F. Stubbins, Modeling creep and fatigue of copper alloys, Metall. Mater. Trans. A, 31(2000), No. 10, p. 2491.
    [2]
    G. Carro, A. Muñoz, M.A. Monge, B. Savoini, R. Pareja, C. Ballesteros, and P. Adeva, Fabrication and characterization of Y2O3 dispersion strengthened copper alloys, J. Nucl. Mater., 455(2014), No. 1-3, p. 655.
    [3]
    S.J. He, Y.B. Jiang, J.X. Xie, Y.H. Li, and L.J. Yue, Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt% Be alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 641.
    [4]
    J. Groza, Heat-resistant dispersion-strengthened copper alloys, J. Mater. Eng. Perform., 1(1992), No. 1, p. 113.
    [5]
    E. Karakulak, Characterization of Cu-Ti powder metallurgical materials, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 83.
    [6]
    D.W. Lee and B.K. Kim, Nanostructured Cu-Al2O3 composite produced by thermochemical process for electrode application, Mater. Lett., 58(2004), No. 3-4, p. 378.
    [7]
    A. Wagih and A. Fathy, Improving compressibility and thermal properties of Al-Al2O3 nanocomposites using Mg particles, J. Mater. Sci., 53(2018), No. 16, p. 11393.
    [8]
    C. Suryanarayana and N. Al-aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci., 58(2013), No. 4, p. 383.
    [9]
    S.J. Hwang and J.H. Lee, Mechanochemical synthesis of Cu-Al2O3 nanocomposites, Mater. Sci. Eng. A, 405(2005), No. 1-2, p. 140.
    [10]
    S.M.S. Aghamiri, N. Oono, S. Ukai, R. Kasada, H. Noto, Y. Hishinuma, and T. Muroga, Brass-texture induced grain structure evolution in room temperature rolled ODS copper, Mater. Sci. Eng. A, 749(2019), p. 118.
    [11]
    A. Abu-Oqail, A. Wagih, A. Fathy, O. Elkady, and A.M. Kabeel, Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites, Ceram. Int., 45(2019), No. 5, p. 5866.
    [12]
    A. Wagih, A. Abu-Oqail, and A. Fathy, Effect of GNPs content on thermal and mechanical properties of a novel hybrid Cu-Al2O3/GNPs coated Ag nanocomposite, Ceram. Int., 45(2019), No. 1, p. 1115.
    [13]
    M. Baghani, M. Aliofkhazraei, and M. Askari, Cu-Zn-Al2O3 nanocomposites:study of microstructure, corrosion, and wear properties, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 462.
    [14]
    M. Baghani and M. Aliofkhazraei, CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1321.
    [15]
    F. Chi, M. Schmerling, Z. Eliezer, H.L. Marcus, and M.E. Fine, Preparation of Cu-TiN alloy by external nitridation in combination with mechanical alloying, Mater. Sci. Eng. A, 190(1995), No. 1-2, p. 181.
    [16]
    S.C. Tjong and K.C. Lau, Tribological behaviour of SiC particle-reinforced copper matrix composites, Mater. Lett., 43(2000), No. 5-6, p. 274.
    [17]
    J.R. Groza and J.C. Gibeling, Principles of particle selection for dispersion-strengthened copper, Mater. Sci. Eng. A, 171(1993), No. 1-2, p. 115.
    [18]
    L.L. Dong, M. Ahangarkani, W.G. Chen, and Y.S. Zhang, Recent progress in development of tungsten-copper composites:Fabrication, modification and applications, Int. J. Refract. Met. Hard Mater., 75(2018), p. 30.
    [19]
    Z.M. Xie, R. Liu, S. Miao, X.D. Yang, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, Y.Y. Lian, and X. Liu, Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature, Sci. Rep., 5(2015), art. No. 16014.
    [20]
    M.A. Atwater, D. Roy, K.A. Darling, B.G. Butler, R.O. Scattergood, and C.C. Koch, The thermal stability of nanocrystalline copper cryogenically milled with tungsten, Mater. Sci. Eng. A, 558(2012), p. 226.
    [21]
    T. Raghu, R. Sundaresan, P. Ramakrishnan, and T.R. Rama Mohan, Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying, Mater. Sci. Eng. A, 304-306(2001), p. 438.
    [22]
    Y.J. Guo, H.T. Guo, B.X. Gao, X.G. Wang, Y.B. Hu, and Z.Q. Shi, Rapid consolidation of ultrafine grained W-30wt%Cu composites by field assisted sintering from the sol-gel prepared nanopowders, J. Alloys Compd., 724(2017), p. 115.
    [23]
    Y.W. Jiang, S.G. Yang, Z.H. Hua, and H.B. Huang, Sol-gel autocombustion synthesis of metals and metal alloys, Angew. Chem. Int. Ed., 48(2009), No. 45, p. 8529.
    [24]
    S. Mula, D. Setman, K. Youssef, R.O. Scattergood, and C.C. Koch, Structural evolution of Cu(1-X)YX alloys prepared by mechanical alloying:Their thermal stability and mechanical properties, J. Alloys Compd., 627(2015), p. 108.
    [25]
    A.R. Miedema, P.F. de Chatel, and F.R. de Boer, Cohesion in alloys-Fundamentals of a semi-empirical model, Physica B+C, 100(1980), No. 1, p. 1.
    [26]
    M. Ardestani, H. Arabi, H. Razavizadeh, H.R. Rezaie, B. Jankovic, and S. Mentus, An investigation about the activation energies of the reduction transitions of fine dispersed CuWO4-x/WO3-x oxide powders, Int. J. Refract. Met. Hard Mater., 28(2010), No. 3, p. 383.
    [27]
    Y. Zhou, Q.X. Sun, R. Liu, X.P. Wang, C.S. Liu, and Q.F. Fang, Microstructure and properties of fine grained W-15wt%Cu composite sintered by microwave from the sol-gel prepared powders, J. Alloys Compd., 547(2013), p. 18.
    [28]
    A.K. Basu and F.R. Sale, Copper-tungsten composite powders by the hydrogen reduction of copper tungstate, J. Mater. Sci., 13(1978), No. 12, p. 2703.
    [29]
    K.F. Wang, G.D. Sun, Y.D. Wu, and G.H. Zhang, Fabrication of ultrafine and high-purity tungsten carbide powders via a carbothermic reduction-carburization process, J. Alloys Compd., 784(2019), p. 362.
    [30]
    S.N. Alam, Synthesis and characterization of W-Cu nanocomposites developed by mechanical alloying, Mater. Sci. Eng. A, 433(2006), No. 1-2, p. 161.
    [31]
    North American Hoganas High Alloys LLC, GLIDCOP® Dispersion Strengthened Copper, North American Hoganas High Alloys LLC, Pennsylvania[2019-7-25]. https://www.hoganas.com/en/powder-technologies/glidcop
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(662) PDF Downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return