Gurmail Singh, Niraj Bala, and Vikas Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC (N) coatings on ASTM-SA213-T22 steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 401-416.
Cite this article as:
Gurmail Singh, Niraj Bala, and Vikas Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC (N) coatings on ASTM-SA213-T22 steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 401-416.
Research Article

Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC (N) coatings on ASTM-SA213-T22 steel

+ Author Affiliations
  • Corresponding author:

    Gurmail Singh    E-mail:

  • Received: 12 September 2019Revised: 12 October 2019Accepted: 11 November 2019Available online: 15 February 2020
  • The present paper deals with the investigation of microstructure and high-temperature hot corrosion behavior of high-velocity oxy fuel (HVOF)-produced coatings. Two powder coating compositions, namely, Ni22Cr10Al1Y alloy powder and Ni22Cr10Al1Y (80wt%; micro-sized)–silicon carbide (SiC) (20wt%; nano (N)) powder, were deposited on a T-22 boiler tube steel. The hot corrosion behavior of bare and coated steels was tested at 900°C for 50 cycles in Na2SO4–60wt%V2O5 molten-salt environment. The kinetics of corrosion was established with weight change measurements after each cycle. The microporosity and microhardness of the as-coated samples have been reported. The X-ray diffraction, field emission-scanning electron microscopy/energy dispersive spectroscopy, and X-ray mapping characterization techniques have been utilized for structural analysis of the as-coated and hot-corroded samples. The results showed that both coatings were deposited with a porosity less than 2%. Both coated samples revealed the development of harder surfaces than the substrate. During hot corrosion testing, the bare T22 steel showed an accelerated corrosion in comparison with its coated counterparts. The HVOF-sprayed coatings were befitted effectively by maintaining their adherence during testing. The Ni22Cr10Al1Y–20wt%SiC (N) composite coating was more effective than the Ni–22Cr–10Al–1Y coating against corrosion in the high-temperature fluxing process.
  • loading
  • [1]
    N. Eliaz, G. Shemesh, and R.M. Latanision, Hot corrosion in gas turbine components, Eng. Fail. Anal., 9(2002), No. 1, p. 31. doi: 10.1016/S1350-6307(00)00035-2
    K. Yamada, Y. Tomono, J. Morimoto, Y. Sasaki, and A. Ohmori, Hot corrosion behavior of boiler tube materials in refuse incineration environment, Vacuum, 65(2002), No. 3-4, p. 533. doi: 10.1016/S0042-207X(01)00468-7
    R.A. Rapp, Hot corrosion of materials: A fluxing mechanism?, Corros. Sci., 44(2002), No. 2, p. 209. doi: 10.1016/S0010-938X(01)00057-9
    S. Kamal, R. Jayaganthan, and S. Prakash, High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900°C, Bull. Mater. Sci., 33(2010), No. 3, p. 299. doi: 10.1007/s12034-010-0046-4
    H. Singh, D. Puri, and S. Prakash, An overview of Na2SO4 and/or V2O5 induced hot corrosion of Fe- and Ni-based superalloys, Rev. Adv. Mater. Sci., 16(2007), No. 1-2, p. 27.
    G.A. Kolta, I.F. Hewaidy, and N.S. Felix, Reactions between sodium sulphate and vanadium pentoxide, Thermochim. Acta, 4(1972), No. 2, p. 151. doi: 10.1016/S0040-6031(72)80029-7
    G.W. Goward, Protective coatings–Purpose, role, and design, Mater. Sci. Technol., 2(1986), No. 3, p. 194. doi: 10.1179/mst.1986.2.3.194
    C. Wagner, Oxidation of alloys involving noble metals, J. Electrochem. Soc., 103(1956), No. 10, p. 571. doi: 10.1149/1.2430159
    T.S. Sidhu, R.D. Agrawal, and S. Prakash, Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—A review, Surf. Coat. Technol., 198(2005), No. 1-3, p. 441. doi: 10.1016/j.surfcoat.2004.10.056
    Y. Wang and W. Chen, Microstructures, properties and high-temperature carburization resistances of HVOF thermal sprayed NiAl intermetallic-based alloy coatings, Surf. Coat. Technol., 183(2004), No. 1, p. 18. doi: 10.1016/j.surfcoat.2003.08.080
    G. Marginean and D. Utu, Cyclic oxidation behaviour of different treated CoNiCrAlY coatings, Appl. Surf. Sci., 258(2012), No. 20, p. 8307. doi: 10.1016/j.apsusc.2012.05.050
    L. Ajdelsztajn, J.A. Picas, G.E. Kim, F.L. Bastian, J. Schoenung, and V. Provenzano, Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder, Mater. Sci. Eng. A, 338(2002), No. 1-2, p. 33. doi: 10.1016/S0921-5093(02)00008-4
    Y.N. Wu, M. Qin, Z.C. Feng, Y. Liang, C. Sun, and F.H. Wang, Improved oxidation resistance of NiCrAlY coatings, Mater. Lett., 57(2003), No. 16-17, p. 2404. doi: 10.1016/S0167-577X(02)01244-2
    L.J. Zhu, S.L. Zhu, and F.H. Wang, Hot corrosion behaviour of a Ni + CrAlYSiN composite coating in Na2SO4–25wt%NaCl melt, Appl. Surf. Sci., 268(2013), p. 103. doi: 10.1016/j.apsusc.2012.12.012
    W.Z. Li, Y. Yao, Q.M. Wang, Z.B. Bao, J. Gong, C. Sun, and X. Jiang, Improvement of oxidation-resistance of NiCrAlY coatings by application of CrN or CrON interlayer, J. Mater. Res., 23(2008), No. 2, p. 341. doi: 10.1557/JMR.2008.0062
    H.R. Eschnauer and O. Knotek, Complex carbide powders for plasma spraying, Thin Solid Films, 45(1977), No. 2, p. 287. doi: 10.1016/0040-6090(77)90262-0
    J. Mehta, V.K. Mittal, and P. Gupta, Role of thermal spray coatings on wear, erosion and corrosion behavior?: A review, J. Appl. Sci. Eng., 20(2017), No. 4, p. 445.
    J. Wang, K. Li, D. Shu, X. He, B.D. Sun, Q.X. Guo, M. Nishio, and H. Ogawa, Effects of structure and processing technique on the properties of thermal spray WC–Co and NiCrAl/WC–Co coatings, Mater. Sci. Eng. A, 371(2004), No. 1-2, p. 187. doi: 10.1016/j.msea.2003.11.045
    Q. Li, G.M. Song, Y.Z. Zhang, T.C. Lei, and W.Z. Chen, Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC, Wear, 254(2003), No. 3-4, p. 222. doi: 10.1016/S0043-1648(03)00007-3
    Y. Zhou, H. Zhang, and B. Qian, Friction and wear properties of the co-deposited Ni–SiC nanocomposite coating, Appl. Surf. Sci., 253(2007), No. 20, p. 8335. doi: 10.1016/j.apsusc.2007.04.047
    F. Mubarok and N. Espallargas, Tribological behaviour of thermally sprayed silicon carbide coatings, Tribol. Int., 85(2015), p. 56. doi: 10.1016/j.triboint.2014.11.027
    M. Tului, B. Giambi, S. Lionetti, G. Pulci, F. Sarasini, and T. Valente, Silicon carbide-based plasma sprayed coatings, Surf. Coat. Technol., 207(2012), p. 182. doi: 10.1016/j.surfcoat.2012.06.062
    T.Y. Ouyang, S.H. Xiong, Y. Zhang, D.W. Liua, X.W. Fang, Y. Wang, S.J. Feng, T. Zhou, and J.P. Suo, Cyclic oxidation behavior of SiC-containing self-healing TBC systems fabricated by APS, J. Alloys Compd., 691(2017), p. 811. doi: 10.1016/j.jallcom.2016.08.225
    M. Roy, A. Pauschitz, J. Bernardi, T. Koch, and F. Franek, Microstructure and mechanical properties of HVOF sprayed nanocrystalline Cr3C2–25 (Ni20Cr) coating, J. Therm. Spray Technol., 15(2006), No. 3, p. 372. doi: 10.1361/105996306X124374
    L. Pawlowski, Finely grained nanometric and submicrometric coatings by thermal spraying: A review, Surf. Coat. Technol., 202(2008), No. 18, p. 4318. doi: 10.1016/j.surfcoat.2008.04.004
    M.H. Enayati, F. Karimzadeh, M. Tavoosi, B. Movahedi, and A. Tahvilian, Nanocrystalline NiAl coating prepared by HVOF thermal spraying, J. Therm. Spray Technol., 20(2011), No. 3, p. 440. doi: 10.1007/s11666-010-9588-7
    T. Grosdidier, A. Tidu, and H.L. Liao, Nanocrystalline Fe-40Al coating processed by thermal spraying of milled powder, Scripta Mater., 44(2001), No. 3, p. 387. doi: 10.1016/S1359-6462(00)00611-4
    C. Suryanarayana, Synthesis of nanocomposites by mechanical alloying, J. Alloys Compd., 509(2011), p. S229. doi: 10.1016/j.jallcom.2010.09.063
    D.L. Zhang, Processing of advanced materials using high-energy mechanical milling, Prog. Mater. Sci., 49(2004), No. 3-4, p. 537. doi: 10.1016/S0079-6425(03)00034-3
    G. Xanthopoulou, A. Marinou, G. Vekinis, A. Lekatou, and M.Vardavoulias, Ni–Al and NiO–Al composite coatings by combustion-assisted flame spraying, Coatings, 4(2014), No. 2, p. 231. doi: 10.3390/coatings4020231
    M. Oksa, E. Turunen, T. Suhonen, T. Varis, and S.P. Hannula, Optimization and characterization of high velocity oxy-fuel sprayed coatings: Techniques, materials, and applications, Coatings, 1(2011), No. 1, p. 17. doi: 10.3390/coatings1010017
    T. Sundararajan, S. Kuroda, T. Itagaki, and F. Abe, Steam oxidation resistance of Ni–Cr thermal spray coatings on 9Cr–1Mo steel. Part 2: 50Ni–50Cr, ISIJ Int., 43(2003), No. 1, p. 104. doi: 10.2355/isijinternational.43.104
    N.F. Ak, C. Tekmen, I. Ozdemir, H.S. Soykan, and E. Celik, NiCr coatings on stainless steel by HVOF technique, Surf. Coat. Technol., 174-175(2003), p. 1070. doi: 10.1016/S0257-8972(03)00367-0
    A.H. Dent, A.J. Horlock, D.G. McCartney, and S.J. Harris, The corrosion behavior and microstructure of high-velocity oxy-fuel sprayed nickel-base amorphous/nanocrystalline coatings, J. Therm. Spray Technol., 8(1999), No. 3, p. 399. doi: 10.1361/105996399770350340
    D. Das, R. Balasubramaniam, and M.N. Mungole, Hot corrosion of Fe3Al, J. Mater. Sci., 37(2002), No. 6, p. 1135. doi: 10.1023/A:1014307219963
    N. Bala, H. Singh, and S. Prakash, Accelerated hot corrosion studies of cold spray Ni–50Cr coating on boiler steels, Mater. Des., 31(2010), No. 1, p. 244. doi: 10.1016/j.matdes.2009.06.033
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Performance of high-velocity oxy fuel-sprayed coatings on an Fe-based superalloy in Na2SO4–60% V2O5 environment at 900°C Part II: Hot corrosion behavior of the coatings, J. Mater. Eng. Perform., 15(2006), No. 1, p. 130. doi: 10.1361/105994906X83411
    B.S. Sidhu and S. Prakash, Evaluation of the corrosion behaviour of plasma-sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900°C, Surf. Coat. Technol., 166(2003), No. 1, p. 89. doi: 10.1016/S0257-8972(02)00772-7
    S. Danyluk and J.Y. Park, Corrosion and grain boundary penetration in type 316 stainless steel exposed to a coal gasification environment, Corrosion, 35(1979), No. 12, p. 575. doi: 10.5006/0010-9312-35.12.575
    P. Niranatlumpong, C.B. Ponton, and H.E. Evans, The failure of protective oxides on plasma-sprayed NiCrAlY overlay coatings, Oxid. Met., 53(2000), No. 3-4, p. 241.
    H. Yamano, K. Tani, Y. Harada, and T. Teratani, Oxidation control with chromate pretreatment of MCrAlY unmelted particle and bond coat in thermal barrier system, J. Therm. Spray Technol., 17(2008), No. 2, p. 275. doi: 10.1007/s11666-008-9169-1
    F. Tang, L. Ajdelsztajn, and J.M. Schoenung, Characterization of oxide scales formed on HVOF NiCrAlY coatings with various oxygen contents introduced during thermal spraying, Scripta Mater., 51(2004), No. 1, p. 25. doi: 10.1016/j.scriptamat.2004.03.026
    A. Andersen, B. Haflan, P. Kofstad, and P.K. Lillerud, High temperature corrosion of nickel and dilute nickel-based alloys in (SO2–O2)/SO3 mixtures, Mater. Sci. Eng., 87(1987), p. 45. doi: 10.1016/0025-5416(87)90359-4
    F.H. Stott, Developments in understanding the mechanisms of growth of protective scales on high-temperature alloys, Mater. Charact., 28(1992), No. 3, p. 311. doi: 10.1016/1044-5803(92)90019-E
    N.S. Bornstein, M.A. DeCrescente, and H.A. Roth, The relationship between relative oxide ion content of Na2SO4, the presence of liquid metal oxides and sulfidation attack, Metall. Trans., 4(1973), No. 8, p. 1799. doi: 10.1007/BF02665406
    J.A. Goebel, F.S. Pettit, and G.W. Goward, Mechanisms for the hot corrosion of nickel-base alloys, Metall. Trans., 4(1973), No. 1, p. 261. doi: 10.1007/BF02649626
    G.W. Goward, Progress in coatings for gas turbine airfoils, Surf. Coat. Technol., 108(1998), p. 73.
    S. Kamal, K.V. Sharma, and A.M. Abdul-Rani, Hot corrosion behavior of superalloy in different corrosive environments, J. Miner. Mater. Charact. Eng., 3(2015), p. 26.
    D.K. Gupta and D.S. Duvall, A silicon and hafnium modified plasma sprayed MCrAlY coating, Superalloys, 1984, p. 711.
    J. Roy, S. Chandra, S. Das, and S. Maitra, Oxidation behaviour of silicon carbide—A review, Rev. Adv. Mater. Sci., 38(2014), p. 29.
    J.L. Smialek and N.S. Jacobson, Mechanism of strength degradation for hot corrosion of α-SiC, J. Am. Ceram. Soc., 69(1986), No. 10, p. 741. doi: 10.1111/j.1151-2916.1986.tb07336.x
    Q.G. Fu, H.J. Li, X.H. Shi, K.Z. Li, and G.D. Sun, Silicon carbide coating to protect carbon/carbon composites against oxidation, Scripta Mater., 52(2005), No. 9, p. 923. doi: 10.1016/j.scriptamat.2004.12.029
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Share Article

    Article Metrics

    Article views (1125) PDF downloads(8) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint