Cite this article as: |
Gurmail Singh, Niraj Bala, and Vikas Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC (N) coatings on ASTM-SA213-T22 steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 401-416. https://doi.org/10.1007/s12613-019-1946-y |
Gurmail Singh E-mail: gurmail.malhi@gmail.com
[1] |
N. Eliaz, G. Shemesh, and R.M. Latanision, Hot corrosion in gas turbine components, Eng. Fail. Anal., 9(2002), No. 1, p. 31. doi: 10.1016/S1350-6307(00)00035-2
|
[2] |
K. Yamada, Y. Tomono, J. Morimoto, Y. Sasaki, and A. Ohmori, Hot corrosion behavior of boiler tube materials in refuse incineration environment, Vacuum, 65(2002), No. 3-4, p. 533. doi: 10.1016/S0042-207X(01)00468-7
|
[3] |
R.A. Rapp, Hot corrosion of materials: A fluxing mechanism?, Corros. Sci., 44(2002), No. 2, p. 209. doi: 10.1016/S0010-938X(01)00057-9
|
[4] |
S. Kamal, R. Jayaganthan, and S. Prakash, High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900°C, Bull. Mater. Sci., 33(2010), No. 3, p. 299. doi: 10.1007/s12034-010-0046-4
|
[5] |
H. Singh, D. Puri, and S. Prakash, An overview of Na2SO4 and/or V2O5 induced hot corrosion of Fe- and Ni-based superalloys, Rev. Adv. Mater. Sci., 16(2007), No. 1-2, p. 27.
|
[6] |
G.A. Kolta, I.F. Hewaidy, and N.S. Felix, Reactions between sodium sulphate and vanadium pentoxide, Thermochim. Acta, 4(1972), No. 2, p. 151. doi: 10.1016/S0040-6031(72)80029-7
|
[7] |
G.W. Goward, Protective coatings–Purpose, role, and design, Mater. Sci. Technol., 2(1986), No. 3, p. 194. doi: 10.1179/mst.1986.2.3.194
|
[8] |
C. Wagner, Oxidation of alloys involving noble metals, J. Electrochem. Soc., 103(1956), No. 10, p. 571. doi: 10.1149/1.2430159
|
[9] |
T.S. Sidhu, R.D. Agrawal, and S. Prakash, Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—A review, Surf. Coat. Technol., 198(2005), No. 1-3, p. 441. doi: 10.1016/j.surfcoat.2004.10.056
|
[10] |
Y. Wang and W. Chen, Microstructures, properties and high-temperature carburization resistances of HVOF thermal sprayed NiAl intermetallic-based alloy coatings, Surf. Coat. Technol., 183(2004), No. 1, p. 18. doi: 10.1016/j.surfcoat.2003.08.080
|
[11] |
G. Marginean and D. Utu, Cyclic oxidation behaviour of different treated CoNiCrAlY coatings, Appl. Surf. Sci., 258(2012), No. 20, p. 8307. doi: 10.1016/j.apsusc.2012.05.050
|
[12] |
L. Ajdelsztajn, J.A. Picas, G.E. Kim, F.L. Bastian, J. Schoenung, and V. Provenzano, Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder, Mater. Sci. Eng. A, 338(2002), No. 1-2, p. 33. doi: 10.1016/S0921-5093(02)00008-4
|
[13] |
Y.N. Wu, M. Qin, Z.C. Feng, Y. Liang, C. Sun, and F.H. Wang, Improved oxidation resistance of NiCrAlY coatings, Mater. Lett., 57(2003), No. 16-17, p. 2404. doi: 10.1016/S0167-577X(02)01244-2
|
[14] |
L.J. Zhu, S.L. Zhu, and F.H. Wang, Hot corrosion behaviour of a Ni + CrAlYSiN composite coating in Na2SO4–25wt%NaCl melt, Appl. Surf. Sci., 268(2013), p. 103. doi: 10.1016/j.apsusc.2012.12.012
|
[15] |
W.Z. Li, Y. Yao, Q.M. Wang, Z.B. Bao, J. Gong, C. Sun, and X. Jiang, Improvement of oxidation-resistance of NiCrAlY coatings by application of CrN or CrON interlayer, J. Mater. Res., 23(2008), No. 2, p. 341. doi: 10.1557/JMR.2008.0062
|
[16] |
H.R. Eschnauer and O. Knotek, Complex carbide powders for plasma spraying, Thin Solid Films, 45(1977), No. 2, p. 287. doi: 10.1016/0040-6090(77)90262-0
|
[17] |
J. Mehta, V.K. Mittal, and P. Gupta, Role of thermal spray coatings on wear, erosion and corrosion behavior?: A review, J. Appl. Sci. Eng., 20(2017), No. 4, p. 445.
|
[18] |
J. Wang, K. Li, D. Shu, X. He, B.D. Sun, Q.X. Guo, M. Nishio, and H. Ogawa, Effects of structure and processing technique on the properties of thermal spray WC–Co and NiCrAl/WC–Co coatings, Mater. Sci. Eng. A, 371(2004), No. 1-2, p. 187. doi: 10.1016/j.msea.2003.11.045
|
[19] |
Q. Li, G.M. Song, Y.Z. Zhang, T.C. Lei, and W.Z. Chen, Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC, Wear, 254(2003), No. 3-4, p. 222. doi: 10.1016/S0043-1648(03)00007-3
|
[20] |
Y. Zhou, H. Zhang, and B. Qian, Friction and wear properties of the co-deposited Ni–SiC nanocomposite coating, Appl. Surf. Sci., 253(2007), No. 20, p. 8335. doi: 10.1016/j.apsusc.2007.04.047
|
[21] |
F. Mubarok and N. Espallargas, Tribological behaviour of thermally sprayed silicon carbide coatings, Tribol. Int., 85(2015), p. 56. doi: 10.1016/j.triboint.2014.11.027
|
[22] |
M. Tului, B. Giambi, S. Lionetti, G. Pulci, F. Sarasini, and T. Valente, Silicon carbide-based plasma sprayed coatings, Surf. Coat. Technol., 207(2012), p. 182. doi: 10.1016/j.surfcoat.2012.06.062
|
[23] |
T.Y. Ouyang, S.H. Xiong, Y. Zhang, D.W. Liua, X.W. Fang, Y. Wang, S.J. Feng, T. Zhou, and J.P. Suo, Cyclic oxidation behavior of SiC-containing self-healing TBC systems fabricated by APS, J. Alloys Compd., 691(2017), p. 811. doi: 10.1016/j.jallcom.2016.08.225
|
[24] |
M. Roy, A. Pauschitz, J. Bernardi, T. Koch, and F. Franek, Microstructure and mechanical properties of HVOF sprayed nanocrystalline Cr3C2–25 (Ni20Cr) coating, J. Therm. Spray Technol., 15(2006), No. 3, p. 372. doi: 10.1361/105996306X124374
|
[25] |
L. Pawlowski, Finely grained nanometric and submicrometric coatings by thermal spraying: A review, Surf. Coat. Technol., 202(2008), No. 18, p. 4318. doi: 10.1016/j.surfcoat.2008.04.004
|
[26] |
M.H. Enayati, F. Karimzadeh, M. Tavoosi, B. Movahedi, and A. Tahvilian, Nanocrystalline NiAl coating prepared by HVOF thermal spraying, J. Therm. Spray Technol., 20(2011), No. 3, p. 440. doi: 10.1007/s11666-010-9588-7
|
[27] |
T. Grosdidier, A. Tidu, and H.L. Liao, Nanocrystalline Fe-40Al coating processed by thermal spraying of milled powder, Scripta Mater., 44(2001), No. 3, p. 387. doi: 10.1016/S1359-6462(00)00611-4
|
[28] |
C. Suryanarayana, Synthesis of nanocomposites by mechanical alloying, J. Alloys Compd., 509(2011), p. S229. doi: 10.1016/j.jallcom.2010.09.063
|
[29] |
D.L. Zhang, Processing of advanced materials using high-energy mechanical milling, Prog. Mater. Sci., 49(2004), No. 3-4, p. 537. doi: 10.1016/S0079-6425(03)00034-3
|
[30] |
G. Xanthopoulou, A. Marinou, G. Vekinis, A. Lekatou, and M.Vardavoulias, Ni–Al and NiO–Al composite coatings by combustion-assisted flame spraying, Coatings, 4(2014), No. 2, p. 231. doi: 10.3390/coatings4020231
|
[31] |
M. Oksa, E. Turunen, T. Suhonen, T. Varis, and S.P. Hannula, Optimization and characterization of high velocity oxy-fuel sprayed coatings: Techniques, materials, and applications, Coatings, 1(2011), No. 1, p. 17. doi: 10.3390/coatings1010017
|
[32] |
T. Sundararajan, S. Kuroda, T. Itagaki, and F. Abe, Steam oxidation resistance of Ni–Cr thermal spray coatings on 9Cr–1Mo steel. Part 2: 50Ni–50Cr, ISIJ Int., 43(2003), No. 1, p. 104. doi: 10.2355/isijinternational.43.104
|
[33] |
N.F. Ak, C. Tekmen, I. Ozdemir, H.S. Soykan, and E. Celik, NiCr coatings on stainless steel by HVOF technique, Surf. Coat. Technol., 174-175(2003), p. 1070. doi: 10.1016/S0257-8972(03)00367-0
|
[34] |
A.H. Dent, A.J. Horlock, D.G. McCartney, and S.J. Harris, The corrosion behavior and microstructure of high-velocity oxy-fuel sprayed nickel-base amorphous/nanocrystalline coatings, J. Therm. Spray Technol., 8(1999), No. 3, p. 399. doi: 10.1361/105996399770350340
|
[35] |
D. Das, R. Balasubramaniam, and M.N. Mungole, Hot corrosion of Fe3Al, J. Mater. Sci., 37(2002), No. 6, p. 1135. doi: 10.1023/A:1014307219963
|
[36] |
N. Bala, H. Singh, and S. Prakash, Accelerated hot corrosion studies of cold spray Ni–50Cr coating on boiler steels, Mater. Des., 31(2010), No. 1, p. 244. doi: 10.1016/j.matdes.2009.06.033
|
[37] |
T.S. Sidhu, S. Prakash, and R.D. Agrawal, Performance of high-velocity oxy fuel-sprayed coatings on an Fe-based superalloy in Na2SO4–60% V2O5 environment at 900°C Part II: Hot corrosion behavior of the coatings, J. Mater. Eng. Perform., 15(2006), No. 1, p. 130. doi: 10.1361/105994906X83411
|
[38] |
B.S. Sidhu and S. Prakash, Evaluation of the corrosion behaviour of plasma-sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900°C, Surf. Coat. Technol., 166(2003), No. 1, p. 89. doi: 10.1016/S0257-8972(02)00772-7
|
[39] |
S. Danyluk and J.Y. Park, Corrosion and grain boundary penetration in type 316 stainless steel exposed to a coal gasification environment, Corrosion, 35(1979), No. 12, p. 575. doi: 10.5006/0010-9312-35.12.575
|
[40] |
P. Niranatlumpong, C.B. Ponton, and H.E. Evans, The failure of protective oxides on plasma-sprayed NiCrAlY overlay coatings, Oxid. Met., 53(2000), No. 3-4, p. 241.
|
[41] |
H. Yamano, K. Tani, Y. Harada, and T. Teratani, Oxidation control with chromate pretreatment of MCrAlY unmelted particle and bond coat in thermal barrier system, J. Therm. Spray Technol., 17(2008), No. 2, p. 275. doi: 10.1007/s11666-008-9169-1
|
[42] |
F. Tang, L. Ajdelsztajn, and J.M. Schoenung, Characterization of oxide scales formed on HVOF NiCrAlY coatings with various oxygen contents introduced during thermal spraying, Scripta Mater., 51(2004), No. 1, p. 25. doi: 10.1016/j.scriptamat.2004.03.026
|
[43] |
A. Andersen, B. Haflan, P. Kofstad, and P.K. Lillerud, High temperature corrosion of nickel and dilute nickel-based alloys in (SO2–O2)/SO3 mixtures, Mater. Sci. Eng., 87(1987), p. 45. doi: 10.1016/0025-5416(87)90359-4
|
[44] |
F.H. Stott, Developments in understanding the mechanisms of growth of protective scales on high-temperature alloys, Mater. Charact., 28(1992), No. 3, p. 311. doi: 10.1016/1044-5803(92)90019-E
|
[45] |
N.S. Bornstein, M.A. DeCrescente, and H.A. Roth, The relationship between relative oxide ion content of Na2SO4, the presence of liquid metal oxides and sulfidation attack, Metall. Trans., 4(1973), No. 8, p. 1799. doi: 10.1007/BF02665406
|
[46] |
J.A. Goebel, F.S. Pettit, and G.W. Goward, Mechanisms for the hot corrosion of nickel-base alloys, Metall. Trans., 4(1973), No. 1, p. 261. doi: 10.1007/BF02649626
|
[47] |
G.W. Goward, Progress in coatings for gas turbine airfoils, Surf. Coat. Technol., 108(1998), p. 73.
|
[48] |
S. Kamal, K.V. Sharma, and A.M. Abdul-Rani, Hot corrosion behavior of superalloy in different corrosive environments, J. Miner. Mater. Charact. Eng., 3(2015), p. 26.
|
[49] |
D.K. Gupta and D.S. Duvall, A silicon and hafnium modified plasma sprayed MCrAlY coating, Superalloys, 1984, p. 711.
|
[50] |
J. Roy, S. Chandra, S. Das, and S. Maitra, Oxidation behaviour of silicon carbide—A review, Rev. Adv. Mater. Sci., 38(2014), p. 29.
|
[51] |
J.L. Smialek and N.S. Jacobson, Mechanism of strength degradation for hot corrosion of α-SiC, J. Am. Ceram. Soc., 69(1986), No. 10, p. 741. doi: 10.1111/j.1151-2916.1986.tb07336.x
|
[52] |
Q.G. Fu, H.J. Li, X.H. Shi, K.Z. Li, and G.D. Sun, Silicon carbide coating to protect carbon/carbon composites against oxidation, Scripta Mater., 52(2005), No. 9, p. 923. doi: 10.1016/j.scriptamat.2004.12.029
|