He-tao Su, Fu-bao Zhou, Bo-bo Shi, Hai-ning Qi,  and Jin-chang Deng, Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 275-291. https://doi.org/10.1007/s12613-019-1947-x
Cite this article as:
He-tao Su, Fu-bao Zhou, Bo-bo Shi, Hai-ning Qi,  and Jin-chang Deng, Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 275-291. https://doi.org/10.1007/s12613-019-1947-x
Invited Review

Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review

+ Author Affiliations
  • Corresponding author:

    Fu-bao Zhou    E-mail: f.zhou@cumt.edu.cn

  • Received: 30 August 2019Revised: 4 November 2019Accepted: 25 November 2019Available online: 25 December 2019
  • Coalfield fires are considered a global crisis that contributes significantly to environmental destruction and loss of coal resources and poses a serious threat to human safety and health. In this paper, research related to the initiation, development, and evolution of coalfield fires is reviewed. The existing detection and control techniques of coalfield fires are also reviewed. Traditional firefighting is associated with waste of resources, potential risks of recrudescence, potential safety hazards, extensive and expensive engineering works, and power shortages. Recently, coalfield fires have been recognized as having significant potential for energy conservation and heat energy recovery. Thermoelectric power generation is regarded as a suitable technology for the utilization of heat from coalfield fires. The extraction of heat from coalfield fires can also control coalfield fires and prevent reignition leading to combustion. Technologies for absorbing heat from burning coal and overlying rocks are also analyzed. In addition, the control mode of “three-region linkage” is proposed to improve firefighting efficiency. Integrating heat energy recovery with firefighting is an innovative method to control coalfield fires.

  • loading
  • [1]
    Z.Y. Song, C. Kuenzer, H.Q. Zhu, Z. Zhang, Y.R. Jia, Y.L. Sun, and J.Z. Zhang, Analysis of coal fire dynamics in the Wuda syncline impacted by fire-fighting activities based on in-situ observations and Landsat-8 remote sensing data, Int. J. Coal Geol., 141-142(2015), p. 91. doi: 10.1016/j.coal.2015.03.008
    [2]
    Z.Y. Song and C. Kuenzer, Coal fires in China over the last decade: A comprehensive review, Int. J. Coal Geol., 133(2014), p. 72. doi: 10.1016/j.coal.2014.09.004
    [3]
    G.B. Stracher and T.P. Taylor, Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe, Int. J. Coal Geol., 59(2004), No. 1-2, p. 7. doi: 10.1016/j.coal.2003.03.002
    [4]
    S. Wessling, C. Kuenzer, W. Kessels, and M.W. Wuttke, Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires, Int. J. Coal Geol., 74(2008), No. 3-4, p. 175. doi: 10.1016/j.coal.2007.12.005
    [5]
    S. Wessling, W. Kessels, M. Schmidt, and U. Krause, Investigating dynamic underground coal fires by means of numerical simulation, Geophys. J. Int., 172(2008), No. 1, p. 439. doi: 10.1111/j.1365-246X.2007.03568.x
    [6]
    E.L. Heffern and D.A. Coates, Geologic history of natural coal-bed fires, Powder River basin, USA, Int. J. Coal Geol., 59(2004), No. 1-2, p. 25. doi: 10.1016/j.coal.2003.07.002
    [7]
    M.A. Engle, L.F. Radke, E.L. Heffern, et al., Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA, Sci. Total Environ., 420(2012), p. 146. doi: 10.1016/j.scitotenv.2012.01.037
    [8]
    T. Garrison, J.C. Hower, A.E. Fryar, and E. D'Angelo, Water and soil quality at two eastern-Kentucky (USA) coal fires, Environ. Earth Sci., 75(2016), No. 7, p. 574. doi: 10.1007/s12665-016-5380-4
    [9]
    X.M. Zhang, S.B. Kroonenberg, and C.B. de Boer, Dating of coal fires in Xinjiang, north-west China, Terra Nova, 16(2004), No. 2, p. 68. doi: 10.1111/j.1365-3121.2004.00532.x
    [10]
    C. Kuenzer, J.Z. Zhang, A. Tetzlaff, P. van Dijk, S. Voigt, H. Mehl, and W. Wagner, Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China, Appl. Geogr., 27(2007), No. 1, p. 42. doi: 10.1016/j.apgeog.2006.09.007
    [11]
    J.Z. Zhang and C. Kuenzer, Thermal surface characteristics of coal fires 1 results of in-situ measurements, J. Appl. Geophys., 63(2007), No. 3-4, p. 117. doi: 10.1016/j.jappgeo.2007.08.002
    [12]
    J.Z. Zhang, C. Kuenzer, A. Tetzlaff, D. Oertel, B. Zhukov, and W. Wagner, Thermal characteristics of coal fires 2: Results of measurements on simulated coal fires, J. Appl. Geophys., 63(2007), No. 3-4, p. 135. doi: 10.1016/j.jappgeo.2007.08.003
    [13]
    A.K. Saraf, A. Prakash, S. Sengupta, and R.P. Gupta, Landsat-TM data for estimating ground temperature and depth of subsurface coal fire in the Jharia coalfield, India, Int. J. Remote Sens., 16(1995), No. 12, p. 2111. doi: 10.1080/01431169508954545
    [14]
    R.K. Mishra, P.N.S. Roy, V.K. Singh, and J.K. Pandey, Detection and delineation of coal mine fire in Jharia coal field, India using geophysical approach: A case study, J. Earth Syst. Sci., 127(2018), No. 8, p. 107. doi: 10.1007/s12040-018-1010-8
    [15]
    T.H. Syed, M.J. Riyas, and C. Kuenzer, Remote sensing of coal fires in India: A review, Earth Sci. Rev., 187(2018), p. 338. doi: 10.1016/j.earscirev.2018.10.009
    [16]
    F. Reisen, R. Gillett, J. Choi, G. Fisher, and P. Torre, Characteristics of an open-cut coal mine fire pollution event, Atmos. Environ., 151(2017), p. 140. doi: 10.1016/j.atmosenv.2016.12.015
    [17]
    J.D.N. Pone, K.A. Hein, G.B. Stracher, H.J. Annegarn, R.B. Finkleman, D.R. Blake, J.K. McCormack, and P. Schroeder, The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa, Int. J. Coal Geol., 72(2007), No. 2, p. 124. doi: 10.1016/j.coal.2007.01.001
    [18]
    T.S. Ide, D. Pollard, and F.M. Orr Jr, Fissure formation and subsurface subsidence in a coalbed fire, Int. J. Rock Mech. Min. Sci., 47(2010), No. 1, p. 81. doi: 10.1016/j.ijrmms.2009.05.007
    [19]
    J.M.K. O'Keefe, K.R. Henke, J.C. Hower, M.A. Engle, G.B. Stracher, J.D. Stucker, J.W. Drew, W.D. Staggs, T.M. Murray, M.L. Hammond III, K.D. Adkins, B.J. Mullins, and E.W. Lemley, CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA, Sci. Total Environ., 408(2010), No. 7, p. 1628. doi: 10.1016/j.scitotenv.2009.12.005
    [20]
    J.C. Hower, K.R. Henke, J.M.K. O'Keefe, M.A. Engle, D.R. Blake, and G.B. Stracher, The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents, Int. J. Coal Geol., 80(2009), No. 1, p. 63. doi: 10.1016/j.coal.2009.08.005
    [21]
    T. Garrison, J.M.K. O'Keefe, K.R. Henke, G.C. Copley, D.R. Blake, and J.C. Hower, Gaseous emissions from the Lotts Creek coal mine fire: Perry County, Kentucky, Int. J. Coal Geol., 180(2017), p. 57. doi: 10.1016/j.coal.2017.06.009
    [22]
    J.M.K. O'Keefe, E.R. Neace, M.L. Hammond III, et al., Gas emissions, tars, and secondary minerals at the Ruth Mullins and Tiptop coal mine fires, Int. J. Coal Geol., 195(2018), p. 304. doi: 10.1016/j.coal.2018.06.012
    [23]
    M.A. Engle, L.F. Radke, E.L. Heffern, et al., Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods, Int. J. Coal Geol., 88(2011), No. 2-3, p. 147. doi: 10.1016/j.coal.2011.09.003
    [24]
    P. van Dijk, J.Z. Zhang, W. Jun, C. Kuenzer, and K.H. Wolf, Assessment of the contribution of in-situ combustion of coal to greenhouse gas emission; based on a comparison of Chinese mining information to previous remote sensing estimates, Int. J. Coal Geol., 86(2011), No. 1, p. 108. doi: 10.1016/j.coal.2011.01.009
    [25]
    H.H. Wang, B.Z. Dlugogorski, and E.M. Kennedy, Pathways for production of CO2 and CO in low-temperature oxidation of coal, Energy Fuels, 17(2003), No. 1, p. 150. doi: 10.1021/ef020095l
    [26]
    S. Krishnaswamy, R.D. Gunn, and P.K. Agarwal, Low-temperature oxidation of coal. 2. An experimental and modelling investigation using a fixed-bed isothermal flow reactor, Fuel, 75(1996), No. 3, p. 344. doi: 10.1016/0016-2361(95)00177-8
    [27]
    H.H. Wang, B.Z. Dlugogorski, and E.M. Kennedy, Experimental study on low-temperature oxidation of an Australian coal, Energy Fuels, 13(1999), No. 6, p. 1173. doi: 10.1021/ef990040s
    [28]
    G. Gürdal, H. Hoşgörmez, D.Özcan, X. Li, H.D. Liu, and W.J. Song, The properties of Çan Basin coals (Çanakkale-Turkey): Spontaneous combustion and combustion by-products, Int. J. Coal Geol., 138(2015), p. 1. doi: 10.1016/j.coal.2014.12.004
    [29]
    H.T. Su, F.B. Zhou, J.S. Li, and H.N. Qi, Effects of oxygen supply on low-temperature oxidation of coal: A case study of Jurassic coal in Yima, China, Fuel, 202(2017), p. 446. doi: 10.1016/j.fuel.2017.04.055
    [30]
    H.H. Wang, B.Z. Dlugogorski, and E.M. Kennedy, Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures, Fuel, 81(2002), No. 15, p. 1913. doi: 10.1016/S0016-2361(02)00122-9
    [31]
    B. Kong, Z.H. Li, Y.L. Yang, Z. Liu, and D.C. Yan, A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China, Environ. Sci. Pollut. Res., 24(2017), No. 30, p. 23453. doi: 10.1007/s11356-017-0209-6
    [32]
    T.X. Ren, J.S. Edwards, and D. Clarke, Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion, Fuel, 78(1999), No. 14, p. 1611. doi: 10.1016/S0016-2361(99)00107-6
    [33]
    A. Arisoy and B. Beamish, Reaction kinetics of coal oxidation at low temperatures, Fuel, 159(2015), p. 412. doi: 10.1016/j.fuel.2015.06.054
    [34]
    X.K. Chen, H.T. Li, Q.H. Wang, and Y.N. Zhang, Experimental investigation on the macroscopic characteristic parameters of coal spontaneous combustion under adiabatic oxidation conditions with a mini combustion furnace, Combust. Sci. Technol., 190(2018), No. 6, p. 1075. doi: 10.1080/00102202.2018.1428570
    [35]
    X.Y. Guo, C.B. Deng, X. Zhang, and Y.S. Wang, Formation law of hydrocarbon index gases during coal spontaneous combustion in an oxygen-poor environment, Energy Sources Part A, 41(2019), No. 5, p. 626. doi: 10.1080/15567036.2018.1520345
    [36]
    W. Jo, H. Choi, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim, and S. Lee, Changes in spontaneous combustion characteristics of low-rank coal through pre-oxidation at low temperatures, Korean J. Chem. Eng., 32(2015), No. 2, p. 255. doi: 10.1007/s11814-014-0228-7
    [37]
    Q.L. Shi, B.T. Qin, H.J. Liang, Y. Gao, Q. Bi, and B. Qu, Effects of igneous intrusions on the structure and spontaneous combustion propensity of coal: A case study of bituminous coal in Daxing Mine, China, Fuel, 216(2018), p. 181. doi: 10.1016/j.fuel.2017.12.012
    [38]
    Y. Tang, Analysis of coals with different spontaneous combustion characteristics using infrared spectrometry, J. Appl. Spectrosc., 82(2015), No. 2, p. 316. doi: 10.1007/s10812-015-0105-0
    [39]
    H. Wen, Z.J. Yu, J. Deng, and X.W. Zhai, Spontaneous ignition characteristics of coal in a large-scale furnace: An experimental and numerical investigation, Appl. Therm. Eng., 114(2017), p. 583. doi: 10.1016/j.applthermaleng.2016.12.022
    [40]
    Y. Xiao, S.J. Ren, J. Deng, and C.M. Shu, Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion, Fuel, 227(2018), p. 325. doi: 10.1016/j.fuel.2018.04.070
    [41]
    Y.T. Zhang, X.Q. Shi, Y.Q. Li, and Y.R. Liu, Characteristics of carbon monoxide production and oxidation kinetics during the decaying process of coal spontaneous combustion, Can. J. Chem. Eng., 96(2018), No. 8, p. 1752. doi: 10.1002/cjce.23119
    [42]
    E. Díaz, L. Pintado, L. Faba, S. Ordóñez, and J.M. González-LaFuente, Effect of sewage sludge composition on the susceptibility to spontaneous combustion, J. Hazard. Mater., 361(2019), p. 267. doi: 10.1016/j.jhazmat.2018.08.094
    [43]
    D.W. Xiang, F.M. Shen, J.L. Yang, X. Jiang, H.Y. Zheng, Q.J. Gao, and J.X. Li, Combustion characteristics of unburned pulverized coal and its reaction kinetics with CO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 811. doi: 10.1007/s12613-019-1791-z
    [44]
    C. Herbig and A. Jess, Determination of reactivity and ignition behaviour of solid fuels based on combustion experiments under static and continuous flow conditions, Fuel, 81(2002), No. 18, p. 2387. doi: 10.1016/S0016-2361(02)00177-1
    [45]
    Y.L. Zhang, J.F. Wang, S. Xue, Y. Wu, Z.F. Li, and L.P. Chang, Evaluation of the susceptibility of coal to spontaneous combustion by a TG profile subtraction method, Korean J. Chem. Eng., 33(2016), No. 3, p. 862. doi: 10.1007/s11814-015-0230-8
    [46]
    T. Xu, X.J. Ning, G.W. Wang, W. Liang, J.L. Zhang, Y.J. Li, H.Y. Wang, and C.H. Jiang, Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1412. doi: 10.1007/s12613-018-1695-3
    [47]
    R.V.K. Singh, Spontaneous heating and fire in coal mines, Procedia Eng., 62(2013), p. 78. doi: 10.1016/j.proeng.2013.08.046
    [48]
    J. Deng, Y. Xiao, Q.W. Li, J.H. Lu, and H. Wen, Experimental studies of spontaneous combustion and anaerobic cooling of coal, Fuel, 157(2015), p. 261. doi: 10.1016/j.fuel.2015.04.063
    [49]
    H.T. Su, F.B. Zhou, X.L. Song, and Z.Y. Qiang, Risk analysis of spontaneous coal combustion in steeply inclined longwall gobs using a scaled-down experimental set-up, Process Saf. Environ. Prot., 111(2017), p. 1. doi: 10.1016/j.psep.2017.06.001
    [50]
    H.T. Su, F.B. Zhou, X.L. Song, B.B. Shi, and S.H. Sun, Risk analysis of coal self-ignition in longwall gob: A modeling study on three-dimensional hazard zones, Fire Saf. J., 83(2016), p. 54. doi: 10.1016/j.firesaf.2016.04.002
    [51]
    C.K. Lei, J. Deng, K. Cao, L. Ma, Y. Xiao, and L.F. Ren, A random forest approach for predicting coal spontaneous combustion, Fuel, 223(2018), p. 63. doi: 10.1016/j.fuel.2018.03.005
    [52]
    Y.T. Liang, J. Zhang, L.C. Wang, H.Z. Luo, and T. Ren, Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review, J. Loss Prev. Process Ind., 57(2019), p. 208. doi: 10.1016/j.jlp.2018.12.003
    [53]
    M.A. Engle, R.A. Olea, J.M.K. O'Keefe, J.C. Hower, and N.J. Geboy, Direct estimation of diffuse gaseous emissions from coal fires: Current methods and future directions, Int. J. Coal Geol., 112(2013), p. 164. doi: 10.1016/j.coal.2012.10.005
    [54]
    Z.Q. Hu and Q. Xia, An integrated methodology for monitoring spontaneous combustion of coal waste dumps based on surface temperature detection, Appl. Therm. Eng., 122(2017), p. 27. doi: 10.1016/j.applthermaleng.2017.05.019
    [55]
    B. Zhou, J.M. Wu, J.F. Wang, and Y.G. Wu, Surface-based radon detection to identify spontaneous combustion areas in small abandoned coal mine gobs: Case study of a small coal mine in China, Process Saf. Environ. Prot., 119(2018), p. 223. doi: 10.1016/j.psep.2018.08.011
    [56]
    V. Fierro, J.L. Miranda, C. Romero, J.M. Andres, A. Pierrot, E. Gomez-Landesa, A. Arriaga, and D. Schmal, Use of infrared thermography for the evaluation of heat losses during coal storage, Fuel Process. Technol., 60(1999), No. 3, p. 213. doi: 10.1016/S0378-3820(99)00044-2
    [57]
    J.W. Cai, S.Q. Yang, X.C. Hu, W.X. Song, Q. Xu, B.Z. Zhou, and Y.W. Song, Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation, Fuel, 253(2019), p. 339. doi: 10.1016/j.fuel.2019.05.040
    [58]
    K. Wang, H.B. Tang, F.Q. Wang, Y. Miao, and D.P. Liu, Research on complex air leakage method to prevent coal spontaneous combustion in longwall goaf, PLoS One, 14(2019), No. 3, art. No. e0213101.
    [59]
    N.K. Mohalik, A.M. Khan, S.K. Ray, D. Mishra, N.K. Varma, R.V.K. Singh, and P.K. Singh, Application of CFD techniques to assess spontaneous heating/fire during extraction of thick coal seam using blasting gallery (BG) method, Combust. Sci. Technol., 2019. https://doi.org/10.1080/00102202.2019.1624540.
    [60]
    J. Zhang, H.T. Zhang, T. Ren, J.P. Wei, and Y.T. Liang, Proactive inertisation in longwall goaf for coal spontaneous combustion control-A CFD approach, Saf. Sci., 113(2019), p. 445. doi: 10.1016/j.ssci.2018.12.023
    [61]
    F. Akgun and R.H. Essenhigh, Self-ignition characteristics of coal stockpiles: Theoretical prediction from a two-dimensional unsteady-state model, Fuel, 80(2001), No. 3, p. 409. doi: 10.1016/S0016-2361(00)00097-1
    [62]
    V. Fierro, J.L. Miranda, C. Romero, J.M. Andres, A. Arriaga, and D. Schmal, Model predictions and experimental results on self-heating prevention of stockpiled coals, Fuel, 80(2001), No. 1, p. 125. doi: 10.1016/S0016-2361(00)00062-4
    [63]
    G.Y. Cheng, F. Chen, Y.Q. Jiang, and M. Gao, A new high efficiency organic inhibitor applied to prevent coal spontaneous combustion, [in] Proceedings of the 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer, Tianjin, 2016, p. 1931.
    [64]
    W.M. Cheng, X.M. Hu, J. Xie, and Y.Y. Zhao, An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties, Fuel, 210(2017), p. 826. doi: 10.1016/j.fuel.2017.09.007
    [65]
    B.T. Qin, G.L. Dou, Y. Wang, H.H. Xin, L.Y. Ma, and D.M. Wang, A superabsorbent hydrogel-ascorbic acid composite inhibitor for the suppression of coal oxidation, Fuel, 190(2017), p. 129. doi: 10.1016/j.fuel.2016.11.045
    [66]
    W.X. Ren, Q. Guo, and Z.F. Wang, Application of foam-gel technology for suppressing coal spontaneous combustion in coal mines, Nat. Hazards, 84(2016), No. 2, p. 1207. doi: 10.1007/s11069-016-2499-2
    [67]
    X.W. Ren, F.Z. Wang, Q. Guo, Z.B. Zuo, and Q.S. Fang, Application of foam-gel technique to control CO exposure generated during spontaneous combustion of coal in coal mines, J. Occup. Environ. Hyg., 12(2015), No. 11, p. D239. doi: 10.1080/15459624.2015.1072633
    [68]
    Y.H. Wang, H. Suo, Y. Shan, B. Yu, E.X. Liu, and F. Hou, Comparison and application of two types of filling gel to prevent spontaneous combustion at the region where top-coal caves above entry, [in] International Symposium on Materials Application and Engineering (SMAE 2016), Chiang Mai, 2016.
    [69]
    Z.L. Xi, X.D. Wang, X.L. Wang, L. Wang, D. Li, X.Y. Guo, and L.W. Jin, Polymorphic foam clay for inhibiting the spontaneous combustion of coal, Process Saf. Environ. Prot., 122(2019), p. 263. doi: 10.1016/j.psep.2018.12.014
    [70]
    L.L. Zhang, B.M. Shi, B.T. Qin, Q. Wu, and V. Dao, Characteristics of foamed gel for coal spontaneous combustion prevention and control, Combust. Sci. Technol., 189(2017), No. 6, p. 980. doi: 10.1080/00102202.2016.1264942
    [71]
    Y.P. Zhang, S.W. Zhang, J.G. Wang, and G.H. Hao, Cooling effect analysis of suppressing coal spontaneous ignition with heat pipe, [in] International Conference on Smart Engineering Materials (ICSEM 2018), Bucharest, 2018.
    [72]
    J. Pandey, N.K. Mohalik, R.K. Mishra, A. Khalkho, D. Kumar, and V.K. Singh, Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires, Fire Technol., 51(2015), No. 2, p. 227. doi: 10.1007/s10694-012-0302-9
    [73]
    Q. Zeng and X.T. Chang, Study on the model of fire-heating airflow and its application to Xinjiang coal-field fires, J. China Coal Soc., 32(2007), No. 9, p. 955.
    [74]
    L. Ma, G. Liu, Y. Xiao, J.H. Lu, and Y.J. He, Research on multi-field coupling process of coalfield fire area development and evolution, Sci. Technol. Rev., 34(2016), No. 2, p. 190.
    [75]
    S.C.M. Krevor, T. Ide, S.M. Benson, and F.M. Orr Jr., Real-time tracking of CO2 injected into a subsurface coal fire through high-frequency measurements of the 13CO2 Signature, Environ. Sci. Technol., 45(2011), No. 9, p. 4179. doi: 10.1021/es103761x
    [76]
    J. Li, P.B. Fu, Q.R. Zhu, Y.D. Mao, and C. Yang, A lab-scale experiment on low-temperature coal oxidation in context of underground coal fires, Appl. Therm. Eng., 141(2018), p. 333. doi: 10.1016/j.applthermaleng.2018.05.128
    [77]
    Z.Y. Song, D.J. Wu, J.C. Jiang, and X.H. Pan, Thermo-solutal buoyancy driven air flow through thermally decomposed thin porous media in a U-shaped channel: Towards understanding persistent underground coal fires, Appl. Therm. Eng., 159(2019), art. No. 113948.
    [78]
    Z.Y. Song, H.Q. Zhu, B. Tan, H.Y. Wang, and X.F. Qin, Numerical study on effects of air leakages from abandoned galleries on hill-side coal fires, Fire Saf. J., 69(2014), p. 99. doi: 10.1016/j.firesaf.2014.08.011
    [79]
    Z.Y. Song, H.Q. Zhu, J.Y. Xu, and X.F. Qin, Effects of atmospheric pressure fluctuations on hill-side coal fires and surface anomalies, Int. J. Min. Sci. Technol., 25(2015), No. 6, p. 1037. doi: 10.1016/j.ijmst.2015.09.024
    [80]
    C. Kuenzer and G.B. Stracher, Geomorphology of coal seam fires, Geomorphology, 138(2012), No. 1, p. 209. doi: 10.1016/j.geomorph.2011.09.004
    [81]
    S.F. Wang, X.B. Li, and D.M. Wang, Mining-induced void distribution and application in the hydro-thermal investigation and control of an underground coal fire: A case study, Process Saf. Environ. Prot., 102(2016), p. 734. doi: 10.1016/j.psep.2016.06.004
    [82]
    K.H. Wolf and H. Bruining, Modelling the interaction between underground coal fires and their roof rocks, Fuel, 86(2007), No. 17-18, p. 2761. doi: 10.1016/j.fuel.2007.03.009
    [83]
    A.R. Shaik, S.S. Rahman, N.H. Tran, and T. Thanh, Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system, Appl. Therm. Eng., 31(2011), No. 10, p. 1600. doi: 10.1016/j.applthermaleng.2011.01.038
    [84]
    T.Q. Xia, X.X. Wang, F.B. Zhou, J.H. Kang, J.S. Liu, and F. Gao, Evolution of coal self-heating processes in longwall gob areas, Int. J. Heat Mass Transfer, 86(2015), p. 861. doi: 10.1016/j.ijheatmasstransfer.2015.03.072
    [85]
    T.Q. Xia, F.B. Zhou, J.S. Liu, J.H. Kang, and F. Gao, A fully coupled hydro-thermo-mechanical model for the spontaneous combustion of underground coal seams, Fuel, 125(2014), p. 106. doi: 10.1016/j.fuel.2014.02.023
    [86]
    Y. Tang, X.X. Zhong, G.Y. Li, Z.J. Yang, and G.Q. Shi, Simulation of dynamic temperature evolution in an underground coal fire area based on an optimised Thermal-Hydraulic-Chemical model, Combust. Theor. Model., 23(2019), No. 1, p. 127. doi: 10.1080/13647830.2018.1492742
    [87]
    C.L. Dias, M.L.S. Oliveira, J.C. Hower, S.R. Taffarel, R.M. Kautzmann, and L.F.O. Silva, Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil, Int. J. Coal Geol., 122(2014), p. 50. doi: 10.1016/j.coal.2013.12.011
    [88]
    L.F.O. Silva, M.L.S. Oliveira, E.R. Neace, J.M.K. O'Keefe, K.R. Henke, and J.C. Hower, Nanominerals and ultrafine particles in sublimates from the Ruth Mullins coal fire, Perry County, Eastern Kentucky, USA, Int. J. Coal Geol., 85(2011), No. 2, p. 237. doi: 10.1016/j.coal.2010.12.002
    [89]
    C. Kuenzer, J. Zhang, J. Li, S. Voigt, H. Mehl, and W. Wagner, Detecting unknown coal fires: Synergy of automated coal fire risk area delineation and improved thermal anomaly extraction, Int. J. Remote Sens., 28(2007), No. 20, p. 4561. doi: 10.1080/01431160701250432
    [90]
    M.A. Karri, E.F. Thacher, and B.T. Helenbrook, Exhaust energy conversion by thermoelectric generator: Two case studies, Energy Convers. Manage., 52(2011), No. 3, p. 1596. doi: 10.1016/j.enconman.2010.10.013
    [91]
    C. Kuenzer, C. Hecker, J. Zhang, S. Wessling, and W. Wagner, The potential of multidiurnal MODIS thermal band data for coal fire detection, Int. J. Remote Sens., 29(2008), No. 3, p. 923. doi: 10.1080/01431160701352147
    [92]
    J.N. Carras, S.J. Day, A. Saghafi, and D.J. Williams, Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia, Int. J. Coal Geol., 78(2009), No. 2, p. 161. doi: 10.1016/j.coal.2008.12.001
    [93]
    Z.L. Shao, D.M. Wang, Y.M. Wang, and X.X. Zhong, Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China, J. Appl. Geophys., 104(2014), p. 64. doi: 10.1016/j.jappgeo.2014.02.014
    [94]
    Z.L. Shao, D.M. Wang, Y.M. Wang, X.X. Zhong, X.F. Tang, and D.D. Xi, Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography, Geophys. J. Int., 204(2016), No. 2, p. 1316. doi: 10.1093/gji/ggv525
    [95]
    J.C. Hower, J.M.K. O'Keefe, K.R. Henke, and A. Bagherieh, Time series analysis of CO concentrations from an Eastern Kentucky coal fire, Int. J. Coal Geol., 88(2011), No. 4, p. 227. doi: 10.1016/j.coal.2011.10.001
    [96]
    S.R. Dindarloo, M.M. Hood, A. Bagherieh, and J.C. Hower, A statistical assessment of carbon monoxide emissions from the Truman Shepherd coal fire, Floyd County, Kentucky, Int. J. Coal Geol., 144(2015), p. 88.
    [97]
    G.J. Colaizzi, Prevention, control and/or extinguishment of coal seam fires using cellular grout, Int. J. Coal Geol., 59(2004), No. 1-2, p. 75. doi: 10.1016/j.coal.2003.11.004
    [98]
    Z.L. Shao, D.M. Wang, Y.M. Wang, X.X. Zhong, X.F. Tang, and X.M. Hu, Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China, Nat. Hazards, 75(2015), No. 2, p. 1833. doi: 10.1007/s11069-014-1401-3
    [99]
    S.K. Ray and R.P. Singh, Recent developments and practices to control fire in undergound coal mines, Fire Technol., 43(2007), No. 4, p. 285. doi: 10.1007/s10694-007-0024-6
    [100]
    F.B. Zhou, B.B. Shi, J.W. Cheng, and L.J. Ma, A new approach to control a serious mine fire with using liquid nitrogen as extinguishing media, Fire Technol., 51(2015), No. 2, p. 325. doi: 10.1007/s10694-013-0351-8
    [101]
    B.T. Qin, H.T. Wang, J.Z. Yang, and L.Z. Liu, Large-area goaf fires: A numerical method for locating high-temperature zones and assessing the effect of liquid nitrogen fire control, Environ. Earth Sci., 75(2016), No. 21, p. 1396. doi: 10.1007/s12665-016-6173-5
    [102]
    B.B. Shi, L.J. Ma, W. Dong, and F.B. Zhou, Application of a novel liquid nitrogen control technique for heat stress and fire prevention in underground mines, J. Occup. Environ. Hyg., 12(2015), No. 8, p. D168. doi: 10.1080/15459624.2015.1019074
    [103]
    K. Sanderson, 50-year-old fire put out, Nature, 2007.
    [104]
    C.E.C. Rodriguez, J.C.E. Palacio, O.J. Venturini, E.E.S. Lora, V.M. Cobas, D.M. dos Santos, F.R.L. Dotto, and V. Gialluca, Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil, Appl. Therm. Eng., 52(2013), No. 1, p. 109. doi: 10.1016/j.applthermaleng.2012.11.012
    [105]
    B.B. Shi, H.T. Su, J.S. Li, H.N. Qi, F.B. Zhou, J.L. Torero, and Z.W. Chen, Clean power generation from the intractable natural coalfield fires: Turn harm into benefit, Sci. Rep., 7(2017), art. No. 5302.
    [106]
    Y. Tang, X.X. Zhong, G.Y. Li, and X.H. Zhang, Forced convective heat extraction in underground high-temperature zones of coal fire area, J. Energy Res. Technol., 140(2018), No. 7, art. No. 072008.
    [107]
    J.W. Lund, Direct utilization of geothermal energy, Energies, 3(2010), No. 8, p. 1443. doi: 10.3390/en3081443
    [108]
    P. Bayer, L. Rybach, P. Blum, and R. Brauchler, Review on life cycle environmental effects of geothermal power generation, Renewable Sustainable Energy Rev., 26(2013), p. 446. doi: 10.1016/j.rser.2013.05.039
    [109]
    R. DiPippo, Geothermal power plants: Evolution and performance assessments, Geothermics, 53(2015), p. 291. doi: 10.1016/j.geothermics.2014.07.005
    [110]
    R. Bertani, Geothermal power generation in the world 2010–2014 update report, Geothermics, 60(2016), p. 31. doi: 10.1016/j.geothermics.2015.11.003
    [111]
    C.R. Chamorro, M.E. Mondéjar, R. Ramos, J.J. Segovia, M.C. Martin, and M.A. Villamañán, World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies, Energy, 42(2012), No. 1, p. 10. doi: 10.1016/j.energy.2011.06.005
    [112]
    J.W. Lund, L. Bjelm, G. Bloomquist, and A.K. Mortensen, Characteristics, development and utilization of geothermal resources—A Nordic perspective, Episodes, 31(2008), No. 1, p. 140. doi: 10.18814/epiiugs/2008/v31i1/019
    [113]
    D. Walraven, B. Laenen, and W. D'haeseleer, Comparison of thermodynamic cycles for power production from low-temperature geothermal heat sources, Energy Convers. Manage., 66(2013), p. 220. doi: 10.1016/j.enconman.2012.10.003
    [114]
    P. Bombarda, C.M. Invernizzi, and C. Pietra, Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles, Appl. Therm. Eng., 30(2010), No. 2-3, p. 212. doi: 10.1016/j.applthermaleng.2009.08.006
    [115]
    H.T. Su, F.B. Zhou, H.N. Qi, and J.S. Li, Design for thermoelectric power generation using subsurface coal fires, Energy, 140(2017), p. 929. doi: 10.1016/j.energy.2017.09.029
    [116]
    D. Champier, J.P. Bedecarrats, M. Rivaletto, and F. Strub, Thermoelectric power generation from biomass cook stoves, Energy, 35(2010), No. 2, p. 935. doi: 10.1016/j.energy.2009.07.015
    [117]
    T. Kajikawa, Approach to the practical use of thermoelectric power generation, J. Electron. Mater., 38(2009), No. 7, p. 1083. doi: 10.1007/s11664-009-0831-2
    [118]
    X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, A review of thermoelectrics research—Recent developments and potentials for sustainable and renewable energy applications, Renewable Sustainable Energy Rev., 32(2014), p. 486. doi: 10.1016/j.rser.2013.12.053
    [119]
    S. Tundee, N. Srihajong, and S. Charmongkolpradit, Electric power generation from solar pond using combination of thermosyphon and thermoelectric modules, Energy Procedia, 48(2014), p. 453. doi: 10.1016/j.egypro.2014.02.054
    [120]
    K. Ono and R.O. Suzuki, Thermoelectric power generation: Converting low grade heat into electricity, JOM, 50(1998), No. 12, p. 49. doi: 10.1007/s11837-998-0308-4
    [121]
    D.T. Crane and G.S. Jackson, Optimization of cross flow heat exchangers for thermoelectric waste heat recovery, Energy Convers. Manage., 45(2004), No. 9-10, p. 1565. doi: 10.1016/j.enconman.2003.09.003
    [122]
    E. Massaguer, A. Massaguer, T. Pujol, M. Comamala, L. Montoro, and J.R. Gonzalez, Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system, Energy, 179(2019), p. 306. doi: 10.1016/j.energy.2019.05.004
    [123]
    Y.S.H. Najjar and A. Sallam, Optimum design, heat transfer and performance analysis for thermoelectric energy recovery from the engine exhaust system, J. Electron. Mater., 48(2019), No. 9, p. 5532. doi: 10.1007/s11664-019-07416-y
    [124]
    S.J. Zhang, H.X. Wang, and T. Guo, Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation, Appl. Energy, 88(2011), No. 8, p. 2740. doi: 10.1016/j.apenergy.2011.02.034
    [125]
    J.P. Roy, M.K. Mishra, and A. Misra, Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions, Appl. Energy, 88(2011), No. 9, p. 2995. doi: 10.1016/j.apenergy.2011.02.042
    [126]
    A.I. Kalina, Combined cycle and waste heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation, [In] 1983 Joint Power Generation Conference, Indianapolis, 1983, p. 104.
    [127]
    P.A. Lolos and E.D. Rogdakis, A Kalina power cycle driven by renewable energy sources, Energy, 34(2009), No. 4, p. 457. doi: 10.1016/j.energy.2008.12.011
    [128]
    H.B. Yin, A.S. Sabau, J.C. Conklin, J. McFarlane, and A.L. Qualls, Mixtures of SF6–CO2 as working fluids for geothermal power plants, Appl. Energy, 106(2013), p. 243. doi: 10.1016/j.apenergy.2013.01.060
    [129]
    H.D.M. Hettiarachchia, M. Golubovica, W.M. Worek, and Y. Ikegami, Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources, Energy, 32(2007), No. 9, p. 1698. doi: 10.1016/j.energy.2007.01.005
    [130]
    T. Kujawa, W. Nowak, and A.A. Stachel, Utilization of existing deep geological wells for acquisitions of geothermal energy, Energy, 31(2006), No. 5, p. 650. doi: 10.1016/j.energy.2005.05.002
    [131]
    X.B. Bu, W.B. Ma, and H.S. Li, Geothermal energy production utilizing abandoned oil and gas wells, Renewable Energy, 41(2012), p. 80. doi: 10.1016/j.renene.2011.10.009
    [132]
    G.P. Willhite, Over-all heat transfer coefficients in steam and hot water injection wells, J. Pet. Technol., 19(1967), No. 5, p. 607. doi: 10.2118/1449-PA
    [133]
    W.L. Cheng, Y.H. Huang, D.T. Lu, and H.R. Yin, A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity, Energy, 36(2011), No. 7, p. 4080. doi: 10.1016/j.energy.2011.04.039
    [134]
    M. Esen and H. Esen, Experimental investigation of a two-phase closed thermosyphon solar water heater, Sol. Energy, 79(2005), No. 5, p. 459. doi: 10.1016/j.solener.2005.01.001
    [135]
    S. Das, A. Giri, S. Samanta, and S. Kanagaraj, An experimental investigation of properties of nanofluid and its performance on thermosyphon cooled by natural convection, J. Therm. Sci. Eng. Appl., 11(2019), No. 4, art. No. 044501.
    [136]
    M. Feilizadeh, M.R.K. Estahbanati, M. Khorram, and M.R. Rahimpour, Experimental investigation of an active thermosyphon solar still with enhanced condenser, Renewable Energy, 143(2019), p. 328. doi: 10.1016/j.renene.2019.05.013
    [137]
    K. Yamaguchi, M. Miki, E. Shaanika, M. Izumi, Y. Murase, and T. Oryu, Study of neon heat flux in thermosyphon cooling system for high-temperature superconducting machinery, Int. J. Therm. Sci., 142(2019), p. 258. doi: 10.1016/j.ijthermalsci.2019.04.030
    [138]
    H.T. Su, H.N. Qi, P. Liu, and J.S. Li, Experimental investigation on heat extraction using a two-phase closed thermosyphon for thermoelectric power generation, Energy Sources Part A, 40(2018), No. 12, p. 1485. doi: 10.1080/15567036.2018.1477875
    [139]
    W. He, Y.Y. Su, Y.Q. Wang, S.B. Riffat, and J. Ji, A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors, Renewable Energy, 37(2012), No. 1, p. 142. doi: 10.1016/j.renene.2011.06.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Share Article

    Article Metrics

    Article Views(2412) PDF Downloads(113) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return