Cite this article as: |
Guo-quan Lai, Hong-zhong Liu, Bang-dao Chen, Dong Niu, Biao Lei, and Wei-tao Jiang, Electrodeposition of functionally graded Ni−W/Er2O3 rare earth nanoparticle composite film, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 818-829. https://doi.org/10.1007/s12613-019-1953-z |
Hong-zhong Liu E-mail: hzliu@mail.xjtu.edu.cn
Bang-dao Chen E-mail: bdchen@mail.xjtu.edu.cn
[1] |
B. Bostani, N.P. Ahmadi, S. Yazdani, and R. Arghavanian, Synthesis and characterization of functionally gradient Ni−ZrO2 composite coating, Prot. Met. Phys. Chem. Surf., 54(2018), No. 2, p. 222. doi: 10.1134/S2070205118020156
|
[2] |
B.S. Li, W.W. Zhang, W. Zhang, and Y.X. Huan, Preparation of Ni−W/SiC nanocomposite coatings by electrochemical deposition, J. Alloys Compd., 702(2017), p. 38. doi: 10.1016/j.jallcom.2017.01.239
|
[3] |
B.S, Li, W.W, Zhang, Y.X, Huan, and J. Dong, Synthesis and characterization of Ni−B/Al2O3 nanocomposite coating by electrodeposition using trimethylamine borane as boron precursor, Surf. Coat. Technol., 337(2018), p. 186. doi: 10.1016/j.surfcoat.2018.01.018
|
[4] |
L. Shi, C.F. Sun, P. Gao, F. Zhou, and W.M. Liu, Mechanical properties and wear and corrosion resistance of electrodeposited Ni−Co/SiC nanocomposite coating, Appl. Surf. Sci., 252(2006), No. 10, p. 3591. doi: 10.1016/j.apsusc.2005.05.035
|
[5] |
J.X, Zhang, X.M. Wang, D.D. Qin, Z.H. Xue, and X.Q. Lu, Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction, Appl. Surf. Sci., 320(2014), p. 73. doi: 10.1016/j.apsusc.2014.09.056
|
[6] |
L.P. Wang, Y. Gao, Q.J. Xue, H.W. Liu, and T. Xu, Graded composition and structure in nanocrystalline Ni−Co alloys for decreasing internal stress and improving tribological properties, J. Phys. D:Appl. Phys., 38(2005), No. 8, p. 1318. doi: 10.1088/0022-3727/38/8/033
|
[7] |
U. Wiklund, J. Gunnars, and S. Hogmark, Influence of residual stresses on fracture and delamination of thin hard coatings, Wear, 232(1999), No. 2, p. 262. doi: 10.1016/S0043-1648(99)00155-6
|
[8] |
T. Yamasaki, P. Schloβmacher, K. Ehrlich, and Y. Ogino, Formation of amorphous electrodeposited Ni−W alloys and their nanocrystallization, Nanostruct. Mater., 10(1998), No. 3, p. 375. doi: 10.1016/S0965-9773(98)00078-6
|
[9] |
Y.S. Dong, P.H. Lin, and H.X. Wang, Electroplating preparation of Ni−Al2O3 graded composite coatings using a rotating cathode, Surf. Coat. Technol., 200(2006), No. 11, p. 3633. doi: 10.1016/j.surfcoat.2004.11.024
|
[10] |
K.A. Khor and Y.W. Gu, Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings, Mater. Sci. Eng. A, 277(2000), No. 1-2, p. 64. doi: 10.1016/S0921-5093(99)00565-1
|
[11] |
X. Peng, J. Yan, L. Zheng, and F. Wang, Oxidation of a novel CeO2‐dispersed chromium coating in wet air, Mater. Corros., 62(2011), No. 6, p. 514. doi: 10.1002/maco.201005868
|
[12] |
S. Put, J. Vleugels, and O. Van der Biest, Functionally graded WC−Co materials produced by electrophoretic deposition, Scripta Mater., 45(2001), No. 10, p. 1139. doi: 10.1016/S1359-6462(01)01126-5
|
[13] |
B.L. Han and X.C. Lu, Effect of La2O3 on microstructure, mechanical and tribological properties of Ni−W coatings, Chin. Sci. Bull., 54(2009), No. 24, p. 4566.
|
[14] |
Z.C. Guo and X.Y. Zhu, Studies on properties and structure of electrodeposited RE−Ni−W−B−SiC composite coating, Mater. Sci. Eng. A, 363(2003), No. 1-2, p. 325. doi: 10.1016/S0921-5093(03)00666-X
|
[15] |
B.S. Li, W.W. Zhang, D.D. Li, Y.X. Huan, and J. Dong, Microstructural, surface and electrochemical properties of a novel Ni−B/Ni−W−BN duplex composite coating by co-electrodeposition, Appl. Surf. Sci., 458(2018), p. 305. doi: 10.1016/j.apsusc.2018.07.100
|
[16] |
E. García-Lecina, I. García-Urrutia, J.A. Díez, M. Salvo, F. Smeacetto, G. Gautier, R. Seddon, and R. Martin, Electrochemical preparation and characterization of Ni/SiC compositionally graded multilayered coatings, Electrochim. Acta, 54(2009), No. 9, p. 2556. doi: 10.1016/j.electacta.2008.04.064
|
[17] |
C.T. Low, R.G.A. Wills, and F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surf. Coat. Technol., 201(2006), No. 1-2, p. 371. doi: 10.1016/j.surfcoat.2005.11.123
|
[18] |
P. Indyka, E. Beltowska-Lehman, L. Tarkowski, A. Bigos, and E. Garcia-Lecina, Structure characterization of nanocrystalline Ni−W alloys obtained by electrodeposition, J. Alloys Compd., 590(2014), p. 75. doi: 10.1016/j.jallcom.2013.12.085
|
[19] |
S. Lee and S. Kim, Electrochemical synthesis and characterization of erbium oxide, Ceram. Int., 42(2016), No. 16, p. 18425. doi: 10.1016/j.ceramint.2016.08.176
|
[20] |
M.F. Zhang, C.F. Zhu, C.P. Yang, and Y.N. Lv, Preparation of amorphous Ni−W coating for the current collector of Na/S battery by electrodeposition, Surf. Coat. Technol., 346(2018), p. 40. doi: 10.1016/j.surfcoat.2018.04.041
|
[21] |
P.A. Orrillo, S.B. Ribotta, L.M. Gassa, G. Benítez, R.C. Salvarezza, and M.E. Vela, Phosphonic acid functionalization of nanostructured Ni−W coatings on steel, Appl. Surf. Sci., 433(2018), p. 292. doi: 10.1016/j.apsusc.2017.09.222
|
[22] |
E.W. Brooman, Corrosion performance of environmentally acceptable alternatives to cadmium and chromium coatings: Chromium—Part II, Met. Finish., 98(2000), No. 8, p. 39. doi: 10.1016/S0026-0576(00)82740-3
|
[23] |
S. Kirihara, Y. Umeda, K. Tashiro, H. Honma, and O. Takai, Development of Ni−W alloy plating as a substitution of hard chromium plating, Trans. Mater. Res. Soc. Jpn, 41(2016), No. 1, p. 35. doi: 10.14723/tmrsj.41.35
|
[24] |
L. Hao, J. Wei, and F.X. Gan, Electroless Ni−P coating on W−Cu composite via three different activation processes, Surf. Eng., 25(2009), No. 5, p. 372. doi: 10.1179/174329408X326371
|
[25] |
S.A. Lajevardi, T. Shahrabi, and J.A. Szpunar, Tribological properties of functionally graded Ni−Al2O3 nanocomposite coating, J. Electrochem. Soc., 164(2017), No. 6, p. D275. doi: 10.1149/2.0731706jes
|
[26] |
H. Li, Y. He, T. He, D.Y. Qing, F.J. Luo, Y. Fan, and X. Chen, Ni−W/BN(h) electrodeposited nanocomposite coating with functionally graded microstructure, J. Alloys Compd., 704(2017), p. 32. doi: 10.1016/j.jallcom.2017.02.037
|
[27] |
D.V. Suvorov, G.P. Gololobov, D.Y. Tarabrin, E.V. Slivkin, S.M. Karabanov, and A. Tolstoguzov, Electrochemical deposition of Ni−W crack-free coatings, Coatings, 8(2018), No. 7, p. 233. doi: 10.3390/coatings8070233
|
[28] |
N. Eliaz, T.M. Sridhar, and E. Gileadi, Synthesis and characterization of nickel tungsten alloys by electrodeposition, Electrochim. Acta, 50(2005), No. 14, p. 2893. doi: 10.1016/j.electacta.2004.11.038
|
[29] |
A. Chianpairot, G. Lothongkum, C.A. Schuh, and Y. Boonyongmaneerat, Corrosion of nanocrystalline Ni−W alloys in alkaline and acidic 3.5wt% NaCl solutions, Corros. Sci., 53(2011), No. 3, p. 1066. doi: 10.1016/j.corsci.2010.12.001
|
[30] |
O. Younes and E. Gileadi, Electroplating of high tungsten content Ni/W alloys, Electrochem. Solid-State Lett., 3(2000), No. 12, p. 543.
|
[31] |
O. Younes and E. Gileadi, Electroplating of Ni/W alloys: I. Ammoniacal citrate baths, J. Electrochem. Soc., 149(2002), No. 2, p. C100. doi: 10.1149/1.1433750
|
[32] |
M. Ma, V.S. Donepudi, G. Sandi, Y.K. Sun, and J. Prakash, Electrodeposition of nano-structured nickel−21% tungsten alloy and evaluation of oxygen reduction reaction in a 1% sodium hydroxide solution, Electrochim. Acta, 49(2004), No. 25, p. 4411. doi: 10.1016/j.electacta.2004.04.037
|
[33] |
K.R. Sriraman, S.G.S. Raman, and S.K. Seshadri, Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nanocrystalline Ni−W alloys, Mater. Sci. Eng. A, 418(2006), No. 1-2, p. 303. doi: 10.1016/j.msea.2005.11.046
|
[34] |
N. Guglielmi, Kinetics of the deposition of inert particles from electrolytic baths, J. Electrochem. Soc., 119(1972), No. 8, p. 1009. doi: 10.1149/1.2404383
|
[35] |
D. Landolt, Electrochemical and materials science aspects of alloy deposition, Electrochim. Acta, 39(1994), No. 8-9, p. 1075. doi: 10.1016/0013-4686(94)E0022-R
|
[36] |
M.H. Allahyarzadeh, M. Aliofkhazraei, A.R.S. Rouhaghdam, and V. Torabinejad, Electrodeposition of Ni−W−Al2O3 nanocomposite coating with functionally graded microstructure, J. Alloys Compd., 666(2016), p. 217. doi: 10.1016/j.jallcom.2016.01.031
|
[37] |
B.S. Li, D.D. Li, W. Chen, Y.Y. Liu, J. Zhang, Y.L. Wei, W.W. Zhang, and W.C. Jia, Effect of current density and deposition time on microstructure and corrosion resistance of Ni−W/TiN nanocomposite coating, Ceram. Int., 45(2019), No. 4, p. 4870. doi: 10.1016/j.ceramint.2018.11.184
|
[38] |
R.J. Sen, S. Das, and K. Das, Effect of stirring rate on the microstructure and microhardness of Ni−CeO2 nanocomposite coating and investigation of the corrosion property, Surf. Coat. Technol., 205(2011), No. 13-14, p. 3847. doi: 10.1016/j.surfcoat.2011.01.057
|
[39] |
F.Z. Yang, Y.F. Guo, L. Huang, S.K. Xu, and S.M. Zhou, Electrodeposition, structure and corrosion resistance of nanocrystalline Ni−W alloy, Chin. J. Chem., 22(2004), No. 3, p. 228.
|
[40] |
S.M.L. Baghal, M.H. Sohi, and A. Amadeh, A functionally gradient nano-Ni−Co/SiC composite coating on aluminum and its tribological properties, Surf. Coat. Technol., 206(2012), No. 19-20, p. 4032. doi: 10.1016/j.surfcoat.2012.03.084
|
[41] |
L.M. Chang, Z.T. Wang, S.Y. Shi, and W. Liu, Study on microstructure and properties of electrodeposited Ni−W alloy coating with glycolic acid system, J. Alloys Compd., 509(2011), No. 5, p. 1501. doi: 10.1016/j.jallcom.2010.10.136
|
[42] |
Y.W. Yao, S.W. Yao, L. Zhang, and H.Z. Wang, Electrodeposition and mechanical and corrosion resistance properties of Ni−W/SiC nanocomposite coatings, Mater. Lett., 61(2007), No. 1, p. 67. doi: 10.1016/j.matlet.2006.04.007
|
[43] |
K.H. Hou, H.T. Wang, H.H. Sheu, and M.D. Ger, Preparation and wear resistance of electrodeposited Ni−W/diamond composite coatings, Appl. Surf. Sci., 308(2014), p. 372. doi: 10.1016/j.apsusc.2014.04.175
|
[44] |
N. Udompanit, P. Wangyao, S. Henpraserttae, and Y. Boonyongmaneerat, Wear response of composition-modulated multilayer Ni−W coatings, Adv. Mater. Res., 1025-1026(2014), p. 302. doi: 10.4028/www.scientific.net/AMR.1025-1026.302
|
[45] |
H.T. Wang, H.H. Sheu, M.D. Ger, and K.H. Hou, The effect of heat treatment on the microstructure and mechanical properties of electrodeposited nanocrystalline Ni−W/diamond composite coatings, Surf. Coat. Technol., 259(2014), p. 268. doi: 10.1016/j.surfcoat.2014.03.064
|
[46] |
Y.W. Yao, Preparation, mechanical property and wear resistance of Ni−W/Al2O3 composite coatings, Surf. Eng., 24(2008), No. 3, p. 226. doi: 10.1179/174329408X282613
|
[47] |
K.H. Hou and Y.C. Chen, Preparation and wear resistance of pulse electrodeposited Ni−W/Al2O3 composite coatings, Appl. Surf. Sci., 257(2011), No. 15, p. 6340. doi: 10.1016/j.apsusc.2011.01.089
|
[48] |
E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Kot, and L. Tarkowski, Electrodeposition of nanocrystalline Ni−W coatings strengthened by ultrafine alumina particles, Surf. Coat. Technol., 211(2012), p. 62. doi: 10.1016/j.surfcoat.2011.10.021
|
[49] |
L.P. Wang, J.Y. Zhang, Z.X. Zeng, Y.M. Lin, L.T. Hu, and Q.J. Xue, Fabrication of a nanocrystalline Ni−Co/CoO functionally graded layer with excellent electrochemical corrosion and tribological performance, Nanotechnology, 17(2006), No. 18, p. 4614. doi: 10.1088/0957-4484/17/18/014
|
[50] |
B. Bakhit, A. Akbari, F. Nasirpouri, and M.G. Hosseini, Corrosion resistance of Ni−Co alloy and Ni−Co/SiC nanocomposite coatings electrodeposited by sediment codeposition technique, Appl. Surf. Sci., 307(2014), p. 351. doi: 10.1016/j.apsusc.2014.04.037
|
[51] |
F. Daneshvar-Fatah and F. Nasirpouri, A study on electrodeposition of Ni-noncovalnetly treated carbon nanotubes nanocomposite coatings with desirable mechanical and anti-corrosion properties, Surf. Coat. Technol., 248(2014), p. 63. doi: 10.1016/j.surfcoat.2014.03.023
|