Hassan Kazempour-Liasi, Mohammad Tajally, and Hassan Abdollah-Pour, Liquation cracking in the heat-affected zone of IN939 superalloy tungsten inert gas weldments, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 764-773. https://doi.org/10.1007/s12613-019-1954-y
Cite this article as:
Hassan Kazempour-Liasi, Mohammad Tajally, and Hassan Abdollah-Pour, Liquation cracking in the heat-affected zone of IN939 superalloy tungsten inert gas weldments, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 764-773. https://doi.org/10.1007/s12613-019-1954-y
Research Article

Liquation cracking in the heat-affected zone of IN939 superalloy tungsten inert gas weldments

+ Author Affiliations
  • Corresponding author:

    Mohammad Tajally    E-mail: m_tajally@semnan.ac.ir

  • Received: 18 July 2019Revised: 13 November 2019Accepted: 15 November 2019Available online: 8 January 2020
  • The main aim of this study was to investigate liquation cracking in the heat-affected zone (HAZ) of the IN939 superalloy upon tungsten inert gas welding. A solid solution and age-hardenable filler metals were further studied. On the pre-weld heat-treated samples, upon solving the secondary γ′ particles in the matrix, primary γ′ particles in the base metal grew to “ogdoadically diced cubes” of about 2 μm in side lengths. The pre-weld heat treatment reduced the hardness of the base metal to about HV 310. Microstructural studies using optical and field-emission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ. The constitutional melting of the secondary, eutectic, and Zr-rich phases promoted the liquation cracking in the HAZ. The microstructure of the weld fusion zones showed the presence of fine spheroidal γ′ particles with sizes of about 0.2 μm after the post-weld heat treatment, which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals, respectively. Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.

  • loading
  • [1]
    T.Á. Tejedor, R. Singh, and P. Pilidis, Advanced gas turbine asset and performance management, [in] P. Jansohn, ed., Modern Gas Turbine Systems: High Efficiency, Low Emission, Fuel Flexible Power Generation, Woodhead Publishing Series in Energy, Woodhead Publishing India Private Limited, New Delhi, 2013, p. 515.
    [2]
    O.A. Ojo, N.L. Richards, and M.C. Chaturvedi, Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy, Scripta Mater., 51(2004), No. 7, p. 683. doi: 10.1016/j.scriptamat.2004.06.013
    [3]
    R.K. Sidhu, O.A. Ojo, N.L. Richards, and M.C. Chaturvedi, Metallographic and OIM study of weld cracking in GTA weld build-up of polycrystalline, directionally solidified and single crystal Ni based superalloys, Sci. Technol. Weld. Joining, 14(2009), No. 2, p. 125. doi: 10.1179/136217108X370290
    [4]
    R.K. Sidhu, O.A. Ojo, and M.C. Chaturvedi, Microstructural response of directionally solidified René 80 superalloy to gas-tungsten arc welding, Metall. Mater. Trans. A, 40(2009), No. 1, p. 150. doi: 10.1007/s11661-008-9700-5
    [5]
    K.C. Chen, T.C. Chen, R.K. Shiue, and L.W. Tsay, Liquation cracking in the heat-affected zone of IN738 superalloy weld, Metals, 8(2018), No. 6, p. 387. doi: 10.3390/met8060387
    [6]
    T.B. Gibbons and R. Stickler, IN939: Metallurgy, properties and performance, [in] R. Brunetaud, D. Coutsouradis, T.B. Gibbons, Y. Lindblom, D.B. Meadowcroft, and R. Stickler, eds., High Temperature Alloys for Gas Turbines 1982, D. Reidel Publishing Co., Dordrecht, 1982, p. 369.
    [7]
    C.P. Cutler and S.W.K. Shaw, The interrelationship of γ′ size, grain size and mechanical properties in IN-939, a cast nickel-base superalloy, [in] Strength of Metals and Alloys, Proceedings of the 5th International Conference, Aachen, 1979, p. 1357.
    [8]
    J.N. DuPont, J.C. Lippold, and S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, New Jersey, 2009.
    [9]
    O.A. Ojo, N.L. Richards, and M.C. Chaturvedi, Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded INCONEL 738LC superalloy, Metall. Mater. Trans. A, 37(2006), No. 2, p. 421. doi: 10.1007/s11661-006-0013-2
    [10]
    Q.G. Li, X. Lin, X.H. Wang, H.O. Yang, M.H. Song, and W.D. Huang, Research on the grain boundary liquation mechanism in heat affected zones of laser forming repaired K465 nickel-based superalloy, Metals, 6(2016), No. 3, p. 64. doi: 10.3390/met6030064
    [11]
    O.A. Ojo, Y.L. Wang, and M.C. Chaturvedi, Heat affected zone liquation cracking in electron beam welded third generation nickel base superalloys, Mater. Sci. Eng. A, 476(2008), No. 1-2, p. 217. doi: 10.1016/j.msea.2007.04.091
    [12]
    M. Montazeri and F.M. Ghaini, The liquation cracking behavior of IN738LC superalloy during low power Nd: YAG pulsed laser welding, Mater. Charact., 67(2012), p. 65. doi: 10.1016/j.matchar.2012.02.019
    [13]
    M. Montazeri, F.M. Ghaini, and O.A. Ojo, Heat input and the liquation cracking of laser welded IN738LC superalloy, Weld. J., 92(2013), p. 258.
    [14]
    O.A. Ojo, Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition, Mater. Sci. Technol., 23(2007), No. 10, p. 1149. doi: 10.1179/174328407X213323
    [15]
    O.A. Ojo and M.C. Chaturvedi, Liquation microfissuring in the weld heat-affected zone of an overaged precipitation-hardened nickel-base superalloy, Metall. Mater. Trans. A, 38(2007), p. 356. doi: 10.1007/s11661-006-9025-1
    [16]
    M.A. González Albarrán, D.I. Martínez, E. Díaz, J.C. Diaz, I. Guzman, E. Saucedo, and A.M. Guzman, Effect of preweld heat treatment on the microstructure of heat-affected zone (HAZ) and weldability of Inconel 939 superalloy, J. Mater. Eng. Perform., 23(2014), No. 4, p. 1125. doi: 10.1007/s11665-013-0704-y
    [17]
    M.A. González, D.I. Martínez, A. Pérez, H. Guajardo, and A. Garza, Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy, Mater. Charact., 62(2011), No. 12, p. 1116. doi: 10.1016/j.matchar.2011.09.006
    [18]
    A. Thakur, Microstructural Responses of a Nickel-Base Cast IN-738 Superalloy to a Variety of Pre-Weld Heat-Treatments [Dissertation], University of Manitoba, Winnipeg, 1997.
    [19]
    A. Thakur, N.L. Richards, and M.C. Chaturvedi, On crack-free welding of cast Inconel 738, Int. J. Joining Mater., 15(2003), No. 4, p. 21.
    [20]
    S. Kou, Welding Metallurgy, 2nd ed., John Wiley & Sons, New Jersey, 2003.
    [21]
    R.A. Ricks, A.J. Porter, and R.C. Ecob, The growth of γ′ precipitates in nickel-base superalloys, Acta Metall., 31(1983), No. 1, p. 43. doi: 10.1016/0001-6160(83)90062-7
    [22]
    M. Doi, T. Miyazaki, and T. Wakatsuki, The effect of elastic interaction energy on the morphology of γ′ precipitates in nickel-based alloys, Mater. Sci. Eng., 67(1984), No. 2, p. 247. doi: 10.1016/0025-5416(84)90056-9
    [23]
    O.T. Ola, O.A. Ojo, and M.C. Chaturvedi, On the development of a new pre-weld thermal treatment procedure for preventing heat-affected zone (HAZ) liquation cracking in nickel-base IN 738 superalloy, Philos. Mag., 94(2014), No. 29, p. 3295. doi: 10.1080/14786435.2014.956838
    [24]
    H.X. Li and T.K. Chaki, Grain boundary melting and hot cracking in weld HAZ of a two-phase Ni3Al alloy containing Zr, [in] Materials Research Society Symposium-Proceedings, Vol. 364, Boston, 1995, p375.
    [25]
    S.A. David, J.M. Vitek, S.S. Babu, L.A. Boatner, and R.W. Reed, Welding of nickel base superalloy single crystals, Sci. Technol. Weld. Joining, 2(1997), No. 2, p. 79. doi: 10.1179/stw.1997.2.2.79
    [26]
    P. Petrzak, K. Kowalski, and M. Blicharski, Analysis of phase transformations in Inconel 625 alloy during annealing, Acta Phys. Pol. A, 130(2016), No. 4, p. 1041. doi: 10.12693/APhysPolA.130.1041
    [27]
    S.S. Babu, S.A. David, J.M. Vitek, and M.K. Miller, Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds, J. Phys. IV, 6(1996), p. C5-253.
    [28]
    R. Nakkalil, N.L. Richards, and M.C. Chaturvedi, Fusion zone microstructure of electron beam welded incoloy 903, Scripta Metall. Mater., 26(1992), No. 4, p. 545. doi: 10.1016/0956-716X(92)90281-I
    [29]
    M.V. Nathal, R.A. Mackay, and R.G. Garlick, Temperature dependence of γ−γ′ lattice mismatch in nickel-base superalloys, Mater. Sci. Eng., 75(1985), No. 1-2, p. 195. doi: 10.1016/0025-5416(85)90189-2
    [30]
    B. Geddes, H. Leon, and X. Huang, Superalloys: Alloying and Performance, ASM International, OH, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(3737) PDF Downloads(104) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return