Yang Li, Chang-yong Chen, Guo-qing Qin, Zhou-hua Jiang, Meng Sun, and Kui Chen, Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si–Mn, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1083-1099. https://doi.org/10.1007/s12613-019-1957-8
Cite this article as:
Yang Li, Chang-yong Chen, Guo-qing Qin, Zhou-hua Jiang, Meng Sun, and Kui Chen, Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si–Mn, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1083-1099. https://doi.org/10.1007/s12613-019-1957-8
Research Article

Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si–Mn

+ Author Affiliations
  • Corresponding authors:

    Chang-yong Chen    E-mail: chency@stumail.neu.edu.cn

    Zhou-hua Jiang    E-mail: jiangzh@smm.neu.edu.cn

  • Received: 6 July 2019Revised: 17 November 2019Accepted: 19 November 2019Available online: 27 February 2020
  • To investigate the interaction mechanism between 95Cr saw-wire steel and different refractories, we conducted laboratory experiments at 1873 K. Five crucible materials (SiO2, Al2O3, MgO·Al2O3, MgO, and MgO–CaO) were used. The results indicate that SiO2, Al2O3, and MgO·Al2O3 are not suitable for smelting low-oxygen, low-[Al]s 95Cr saw-wire steel, mainly because they react with the elements in the molten steel and pollute the steel samples. By contrast, MgO–CaO is an ideal choice to produce 95Cr saw-wire steel. It offers three advantages: (i) It does not decompose by itself at the steelmaking temperature of 1873 K because it exhibits good thermal stability; (ii) [C], [Si], and [Mn] in molten steel cannot react with it to increase the [O] content; and (iii) it not only desulfurizes and dephosphorizes but also removes Al2O3 inclusions from the steel simultaneously. As a result, the contents of the main elements ([C], [Si], [Mn], [Cr], N, T.O (total oxygen)) in the steel are not affected and the content of impurity elements ([Al]s, P, and S) can be perfectly controlled within the target range. Furthermore, the number and size of inclusions in the steel samples decrease sharply when the MgO–CaO crucible is used.
  • loading
  • [1]
    L.F. Zhang, State of the art in the control of inclusions in tire cord steels — A review, Steel Res. Int., 77(2006), No. 3, p. 158. doi: 10.1002/srin.200606370
    [2]
    M. Hino, Thermodynamics for the control of non-metallic inclusion composition and precipitation, [in] 182th-183th Nishiyama Memorial Seminar, ISU, Tokyo, 2004, p. 1.
    [3]
    P. Zhao and J.D. Boyd, Microstructure-property relationships in thermomechanically processed microalloyed medium carbon steels, Mater. Sci. Technol., 20(2004), No. 6, p. 695. doi: 10.1179/026708304225017247
    [4]
    S. Kobayashi, Thermodynamic fundamentals for alumina-content control of oxide inclusions in Mn–Si deoxidation of molten steel, ISIJ Int., 39(1999), No. 7, p. 664. doi: 10.2355/isijinternational.39.664
    [5]
    Y. Li, C.Y. Chen, Z.H. Jiang, M. Sun, H. Hu, and H.B. Li, Application of alkali oxides in LF refining slag for enhancing inclusion removal in C96V saw wire steel, ISIJ Int., 58(2018), No. 7, p. 1232. doi: 10.2355/isijinternational.ISIJINT-2018-048
    [6]
    C.Y. Chen, Z.H. Jiang, Y. Li, M. Sun, G.Q. Qin, C.L. Yao, Q. Wang, and H.B. Li, Effect of Rb2O on inclusion removal in C96V saw wire steels using low-basicity LF refining slag, ISIJ Int., 58(2018), No. 11, p. 2032. doi: 10.2355/isijinternational.ISIJINT-2018-385
    [7]
    C.Y. Chen, Z.H. Jiang, Y. Li, M. Sun, K. Chen, Q. Wang, and H.B. Li, Effect of Na2O and Rb2O on inclusion removal in C96V saw wire steels using low-basicity LF (Ladle Furnace) refining slags, Metals, 8(2018), No. 9, p. 691. doi: 10.3390/met8090691
    [8]
    Y.X. Zhu, Control of Inclusions in Cord Steel [Dissertation], University of Science and Technology Beijing, 2009, p. 87.
    [9]
    Y.Q. Zhang, The Study on Morphological Control of Inclusion Using Mg-treatment in Si-Mn Deoxidized Steel [Dissertation], Northeastern University, 2014, p. 101.
    [10]
    Y. Li, Z.H. Jiang, and Y. Liu, Strengthening mechanism of steels treated by barium-bearing alloys, J. Univ. Sci. Technol. Beijing, 15(2008), No. 3, p. 220. doi: 10.1016/S1005-8850(08)60042-0
    [11]
    H.Z. Cui and W.Q. Chen, Effect of boron on morphology of inclusions in tire cord steel, J. Iron Steel Res. Int., 19(2012), No. 4, p. 22. doi: 10.1016/S1006-706X(12)60082-X
    [12]
    M. Sun, Effect of Cerium on Inclusions, Microstructure and Mechanical Properties of C104 Saw Wire Steel [Dissertation], Northeastern University, 2018, p. 78.
    [13]
    K.P. Wang, M. Jiang, X.H. Wang, Y. Wang, H.Q. Zhao, and Z.M. Gao, Formation mechanism of CaO–SiO2–Al2O3–(MgO) inclusions in Si–Mn-killed steel with limited aluminum content during the low basicity slag refining, Metall. Mater. Trans. B, 47(2016), No. 1, p. 282. doi: 10.1007/s11663-015-0502-z
    [14]
    S.P. Tao and X.C. Zhong, Influence of MgO-based and Al2O3-based refractories on inclusions in molten steel, Iron Steel, 42(2007), No. 5, p. 33.
    [15]
    C. Ye, Investigation on Interaction between MgO–A12O3 Refractory and Molten Steel in Refining Process [Dissertation], University of Science and Technology Beijing, 2007, p. 103.
    [16]
    H.Q. Zhao and W.Q. Chen, Effect of crucible material and top slag composition on the inclusion composition of tire cord steel, J. Iron Steel Res., 24(2012), No. 3, p. 12.
    [17]
    X.P. He, Q.F. Wang, X.M. Lu, and J.N. Mu, The effect of Al2O3 containing refractory on aluminum addition of cord steel, [in] The 10th National Youth Conference on refractories, Xiʼan, China, 2006, p. 255.
    [18]
    B.X. Wang, D.Y. Guo, and Y.H. Ren, and H. Gao, Effect of submerged entry nozzle material during cord steel continuous casting process on steel property, Met. Prod., 39(2013), No. 5, p. 33.
    [19]
    L. Chen, W. Chen, Y. Hu, Z. Chen, Y. Xu, and W. Yan, Effect of Al antioxidant in MgO–C refractory on the formation of Al2O3-rich inclusions in high-carbon steel for saw wire under vacuum conditions, Ironmaking Steelmaking, 45(2018), No. 3, p. 272. doi: 10.1080/03019233.2016.1261245
    [20]
    M.C. Mantovani, L.R. Moraes, R. Leandro da Silva, E.F. Cabral, E.A. Possente, C.A. Barbosa, and B.P. Ramos, Interaction between molten steel and different kinds of MgO based tundish linings, Ironmaking Steelmaking, 40(2013), No. 5, p. 319. doi: 10.1179/1743281212Y.0000000035
    [21]
    J.X. Chen, Data Manual of Common Steel Making Charts, Metallurgical industry press, Beijing, 2010, p. 358.
    [22]
    Z.X. Zhuo, L.F. Wang, X.H. Wang, and W.J. Wang, Composition control of CaO–SiO2–Al2O3 inclusion in tire cord steel, J. Iron Steel Res., 17(2005), No. 4, p. 26.
    [23]
    J.F. Elliott and M. Gleiser, Thermochemistry for Steelmaking, Addison-Wesley, Massachusetts, 1960, p. 620.
    [24]
    G.K. Sigworth and J.F. Elliott, The thermodynamics of liquid dilute iron alloys, Met. Sci., 8(1974), No. 1, p. 298. doi: 10.1179/msc.1974.8.1.298
    [25]
    H. Ohta and H. Suito, Activities of MnO in CaO–SiO2–Al2O3–MnO (< 10 pct) –FetO (< 3 pct) slags saturated with liquid iron, Metall. Mater. Trans. B, 26(1995), No. 2, p. 295. doi: 10.1007/BF02660972
    [26]
    G.Z. Ye, P. Jönsson, and T. Lund, Thermodynamics and Kinetics of the Modification of Al2O3 Inclusions, ISIJ Int., 36(1996), p. 105. doi: 10.2355/isijinternational.36.Suppl_S105
    [27]
    X.B. Zhang, Thermodynamic modeling for controls of deoxidation and oxide inclusions in molten steel, Acta Metall. Sin., 40(2004), No. 5, p. 509.
    [28]
    H. Cengizler and R.H. Eric, Activity of MnO in MnO–CaO–MgO–SiO2–Al2O3 slags at 1500°C, Steel Res. Int., 77(2006), No. 11, p. 793. doi: 10.1002/srin.200606464
    [29]
    R.A. Frank, C.W. Finn, and J.F. Elliott, Physical chemistry of the carbothermic reduction of alumina in the presence of a metallic solvent: Part II. Measurements of kinetics of reaction, Metall. Mater. Trans. B, 20(1989), No. 2, p. 161. doi: 10.1007/BF02825597
    [30]
    M. Ikram-Ul Haq, R. Khanna, Y. Wang, and V. Sahajwalla, A novel X-ray micro-diffraction approach for structural characterization of trace quantities of secondary phases in Al2O3–C/Fe system, Metall. Mater. Trans. B, 45(2014), No. 6, p. 1970. doi: 10.1007/s11663-014-0201-1
    [31]
    R. Khanna, S. Kongkarat, S. Seetharaman, and V. Sahajwalla, Carbothermic reduction of alumina at 1823 K in the presence of molten steel: A sessile drop investigation, ISIJ Int., 52(2012), No. 6, p. 992. doi: 10.2355/isijinternational.52.992
    [32]
    R. Khanna, M. Ikram-Ul Haq, Y. Wang, S. Seetharaman, and V. Sahajwalla, Chemical interactions of alumina–carbon refractories with molten steel at 1823 K (1550°C): Implications for refractory degradation and steel quality, Metall. Mater. Trans. B, 42(2011), No. 4, p. 677. doi: 10.1007/s11663-011-9520-7
    [33]
    H. Gaye, C. Gatellier, and P.V. Riboud, Physico-chemical aspects of the ladle desulphurization of iron and steel, [in] Foundry Processes, Springer, Boston, p. 333.
    [34]
    D.Z. Wang, Dephosphorization in Iron and Steel Production, Y.J. Cao and J.X. Liu, eds., Metallurgical Industry Press, Beijing, 1986, p. 89.
    [35]
    N. Li and J.C. Kuang, Dephosphorization of basic refractories, Naihuocailiao, 34(2000), No. 5, p. 249.
    [36]
    H. Goto, K.I. Miyazawa, and T. Kadoya, Effect of the composition of oxide on the reaction between oxide and sulfur during solidification of steels, ISIJ Int., 35(1995), No. 12, p. 1477. doi: 10.2355/isijinternational.35.1477
    [37]
    K. Nagata, J. Tanabe, and K.S. Goto, Activities of calcium oxide in CaO based inclusions measured by galvanic cells, [in] Proceedings of The Sixth International Iron and Steel Congress, Nagoya, 1990, p. 217.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(15)

    Share Article

    Article Metrics

    Article Views(1251) PDF Downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return