Cite this article as: |
Mohammad Khosravi, Mohammad Mansouri, Ali Gholami, and Yadollah Yaghoubinezhad, Effect of graphene oxide and reduced graphene oxide nanosheets on the microstructure and mechanical properties of mild steel jointing by flux-cored arc welding, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 505-514. https://doi.org/10.1007/s12613-020-1966-7 |
Yadollah Yaghoubinezhad E-mail: Yaghoubinezhad@birjandut.ac.ir
The effect of graphene oxide (GO) and reduced graphene oxide (RGO) nanosheets on the microstructure and mechanical properties of welded joints of mild steel was evaluated by flux-cored arc welding. GO was synthesized by the Hummer’s method and was reduced under hydrothermal conditions at a pressure of 1.1 MPa at 180°C for 12 h. 1, 3, and 10 mg/mL paste fillers were used in GO and RGO, and applied to the weld notch. The results clearly showed that by increasing the concentration of RGO up to 10 mg/mL, the tensile strength and hardness of the weld metal were improved by approximately 20.5% and 38.4%, respectively, because the coarse grains were changed into fine domains. The domain of the nanosheets cluster was 19.85 × 10−9 m. Specifically, the RGO nanosheets contributed to modifying the mechanical properties of the welded steel, likely due to dislocation pinning.
[1] |
T. Kannan and N. Murugan, Effect of flux cored arc welding process parameters on duplex stainless steel clad quality, J. Mater. Process. Technol., 176(2006), No. 1-3, p. 230. doi: 10.1016/j.jmatprotec.2006.03.157
|
[2] |
A. Aloraier, R. Ibrahim, and P. Thomson, FCAW process to avoid the use of post weld heat treatment, Int. J. Press. Vessels Pip., 83(2006), No. 5, p. 394. doi: 10.1016/j.ijpvp.2006.02.028
|
[3] |
H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, Friction stir welding of carbon steels, Mater. Sci. Eng. A, 429(2006), No. 1-2, p. 50. doi: 10.1016/j.msea.2006.04.118
|
[4] |
C.Y. Huang, S.P. Hu, and K. Chen, Influence of rolling temperature on the interfaces and mechanical performance of graphene-reinforced aluminum-matrix composites, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 752. doi: 10.1007/s12613-019-1780-2
|
[5] |
M. Das, J. Datta, S. Sil, A. Dey, R. Jana, S. Halder, and P.P. Ray, Equivalent circuit analysis of Al/rGO−TiO2 metal-semiconductor interface via impedance spectroscopy: Graphene induced improvement in carrier mobility and lifetime, Mater. Sci. Semicond. Process., 82(2018), p. 104. doi: 10.1016/j.mssp.2018.03.039
|
[6] |
D. Sivaraj and K. Vijayalakshmi, Novel synthesis of bioactive hydroxyapatite/f-multiwalled carbon nanotube composite coating on 316L SS implant for substantial corrosion resistance and antibacterial activity, J. Alloys Compd., 777(2019), p. 1340. doi: 10.1016/j.jallcom.2018.10.341
|
[7] |
M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy, Adv. Drug Del. Rev., 63(2011), No. 1-2, p. 24. doi: 10.1016/j.addr.2010.05.006
|
[8] |
J.V. Sorathiya, S.G. Shah, and S.M. Kacha, Effect on addition of nano “titanium dioxide” (TiO2) on compressive strength of cementitious concrete, Kalpa Publ. Civil Eng., 1(2017), p. 219. doi: 10.29007/sq9d
|
[9] |
S. Fouladi and M. Abbasi, The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint, J. Mater. Pross. Technol., 243(2017), p. 23. doi: 10.1016/j.jmatprotec.2016.12.005
|
[10] |
R. Pouriamanesh, B. Nasiri, and K. Dehghani, The effect of TiO2 particles on microstructural evolutions of HSLA steels subjected to friction stir weling, Mater. Res. Express, 6(2019), No. 8, art. No. 086593.
|
[11] |
S.V. Makarov and S.B. Sapozhkov, Use of complex nanopowder (Al2O3, Si, Ni, Ti, W) in production of electrodes for manual arc welding, World Appl. Sci. J., 22(2013), No. 2, p. 87.
|
[12] |
Y. Zhang, Q. Cai, Y.C. Liu, Z.Q. Ma, C. Li, and H.J. Li, Evaluation of precipitation hardening in TiC-reinforced Ti2AlNb-based alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 4, p. 453. doi: 10.1007/s12613-018-1591-x
|
[13] |
S.C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R, 74(2013), No. 10, p. 281. doi: 10.1016/j.mser.2013.08.001
|
[14] |
A. Ghasemi-Kahrizsangi and S.F. Kashani-Bozorg, Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing, Surf. Coat. Technol., 209(2012), p. 15. doi: 10.1016/j.surfcoat.2012.08.005
|
[15] |
Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, and H.M. Cheng, Lightweight and flexible graphene foam composites for high‐performance electromagnetic interference shielding, Adv. Mater., 25(2013), No. 9, p. 1296. doi: 10.1002/adma.201204196
|
[16] |
A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8(2008), No. 3, p. 902. doi: 10.1021/nl0731872
|
[17] |
H.P. Zhang, C. Xu, W.L. Xiao, K. Ameyama, and C.L. Ma, Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion, Mater. Sci. Eng. A, 658(2016), p. 8. doi: 10.1016/j.msea.2016.01.076
|
[18] |
D. Lin, C.R. Liu, and G.J. Cheng, Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement, Acta Mater., 80(2014), p. 183. doi: 10.1016/j.actamat.2014.07.038
|
[19] |
D.R. Bortz, E.G. Heras, and I. Martin-Gullon, Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites, Macromolecules, 45(2012), No. 1, p. 238. doi: 10.1021/ma201563k
|
[20] |
L.L. Dong, B. Xiao, Y. Liu, Y.L. Li, Y.Q. Fu, Y.Q. Zhao, and Y.S. Zhang, Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides, Ceram. Int., 44(2018), No. 15, p. 17835. doi: 10.1016/j.ceramint.2018.06.252
|
[21] |
A. Sharma, V.M. Sharma, B. Sahoo, S.K. Pal, and J. Paul, Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing, J. Manuf. Processes, 37(2019), p. 53. doi: 10.1016/j.jmapro.2018.11.009
|
[22] |
J.H. Lin, J. Ba, Y.F. Cai, Q. Ma, D.L. Luo, Z.Y. Wang, J.L. Qi, J. Cao, and J.C. Feng, Brazing SiO2f/SiO2 with TC4 alloy with the help of coating graphene, Vacuum, 145(2017), p. 241. doi: 10.1016/j.vacuum.2017.09.010
|
[23] |
Z.Y. Wang, G. Wang, M.N. Li, J.H. Lin, Q. Ma, A.T. Zhang, Z.X. Zhong, J.L. Qi, and J.C. Feng, Three-dimensional graphene-reinforced Cu foam interlayer for brazing C/C composites and Nb, Carbon, 118(2017), p. 723. doi: 10.1016/j.carbon.2017.03.099
|
[24] |
F. Khodabakhshi, M. Nosko, and A.P. Gerlich, Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al–Mg alloy during friction-stir processing, Surf. Coat. Technol., 335(2018), p. 288. doi: 10.1016/j.surfcoat.2017.12.045
|
[25] |
T. Zhang, J. Shen, L.Q. Lü, C.M. Wang, J.X. Sang, and D. Wu, Effects of graphene nanoplates on microstructures and mechanical properties of NSA-TIG welded AZ31 magnesium alloy joints, Trans. Nonferrous Met. Soc. China, 27(2017), No. 6, p. 1285. doi: 10.1016/S1003-6326(17)60149-3
|
[26] |
M. Fattahi, A.R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi, and S. Akhavan, Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires, Micron, 64(2014), p. 20. doi: 10.1016/j.micron.2014.03.013
|
[27] |
H. Nosrati, R.S. Mamoory, F. Dabir, D.Q.S. Le, C.E. Bünger, M.C. Perez, and M.A. Rodriguez, Effects of hydrothermal pressure on in situ synthesis of 3D graphene-hydroxyapatite nano structured powders, Ceram. Int., 45(2019), No. 2, p. 1761. doi: 10.1016/j.ceramint.2018.10.059
|
[28] |
J. Bohlen, P. Dobroň, J. Swiostek, D. Letzig, F. Chmlík, P. Lukáč, and K.U. Kainer, On the influence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression, J. Mater. Sci. Eng. A, 462(2007), No. 1-2, p. 302. doi: 10.1016/j.msea.2006.02.470
|
[29] |
S.M. He, X.Q. Zeng, L.M. Peng, X.Q. Gao, J.F. Nie, and W.J. Ding, Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250°C, J. Alloys Compd., 421(2006), No. 1-2, p. 309. doi: 10.1016/j.jallcom.2005.11.046
|
[30] |
D. Lin, C.R. Liu, and G.J. Cheng, Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement, Acta Mater., 80(2014), p. 183. doi: 10.1016/j.actamat.2014.07.038
|
[31] |
S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites−A review, Int. Mater. Rev., 55(2010), No. 1, p. 41. doi: 10.1179/095066009X12572530170543
|
[32] |
H.G.P. Kumar and M.A. Xavior, Graphene reinforced metal matrix composite (GRMMC): A review, Procedia Eng., 97(2014), p. 1033. doi: 10.1016/j.proeng.2014.12.381
|
[33] |
M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3(2009), No. 12, p. 3884. doi: 10.1021/nn9010472
|
[34] |
B. Szabo and I. Babuska, Beams, Plates and Shells, Wiley Online Library, London, 2011.
|
[35] |
R.M. Aikin Jr. and L. Christodoulou, The role of equiaxed particles on the yield stress of composites, Scripta Metall. Mater., 25(1991), No. 1, p. 9. doi: 10.1016/0956-716X(91)90345-2
|
[36] |
C.K. Chen and S.H. Ho, Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform, Int. J. Mech. Sci., 41(1999), No. 11, p. 1339. doi: 10.1016/S0020-7403(98)00095-2
|
[37] |
H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang, Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel, Acta Mater., 59(2011), No. 16, p. 6264. doi: 10.1016/j.actamat.2011.06.037
|
[38] |
D. Yoon, Y.W. Son, and H. Cheong, Negative thermal expansion coefficient of graphene measured by Raman spectroscopy, Nano Lett., 11(2011), No. 8, p. 3227. doi: 10.1021/nl201488g
|
[39] |
Z. Barsoum and I. Barsoum, Residual stress effects on fatigue life of welded structures using LEFM, Eng. Fail. Anal., 16(2009), No. 1, p. 449. doi: 10.1016/j.engfailanal.2008.06.017
|
[40] |
A.S. Argon, Physics of Strength and Plasticity, M.I.T Press, Cambridge, 1969.
|
[41] |
S. Lamb and J.E. Bringas, CASTI Handbook of Stainless Steels & Nickel Alloys, Casti Publishing Inc., Edmonton, 2003.
|
[42] |
A.D. Batte and R.W.K. Honeycombe, Strengthening of ferrite by vanadium carbide precipitation, Met. Sci. J., 7(1973), No. 1, p. 160. doi: 10.1179/030634573790445370
|
[43] |
A. Kelly, Strengthening Methods in Crystals, Applied Science Publishers Ltd., London, 1971.
|
[44] |
N. Hansen, Boundary strengthening in undeformed and deformed polycrystals, Mater. Sci. Eng. A, 409(2005), No. 1-2, p. 39. doi: 10.1016/j.msea.2005.04.061
|
[45] |
N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Mater., 51(2004), No. 8, p. 801. doi: 10.1016/j.scriptamat.2004.06.002
|
[46] |
T.B. Massalski, Phase Transformations, ASM, Metals Park, Ohio, 1970.
|
[47] |
Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, and S.M. Han, Strengthening effect of single-atomic-layer graphene in metal−graphene nanolayered composites, Nat. Commun., 4(2013), art. No. 2114.
|
[48] |
D.C. Jang, X.Y. Li, H.J. Gao, and J.R. Greer, Deformation mechanisms in nanotwinned metal nanopillars, Nat. Nanotechnol., 7(2012), No. 9, p. 594. doi: 10.1038/nnano.2012.116
|
[49] |
D. Lin, C. Ye, Y.L. Liao, S. Suslov, R. Liu, and G.J. Cheng, Mechanism of fatigue performance enhancement in a laser sintered superhard nanoparticles reinforced nanocomposite followed by laser shock peening, J. Appl. Phys., 113(2013), No. 13, art. No. 133509.
|
[50] |
V.S. Vinila, R. Jacob, A. Mony, H.G. Nair, S. Issac, S. Rajan, A.S. Nair, and J. Isac, XRD studies on nano crystalline ceramic superconductor PbSrCaCuO at different treating temperatures, Cryst. Struct. Theory Appl., 3(2014), No. 1, art. No. 43963.
|
[51] |
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia,, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45(2007), No. 7, p. 1558. doi: 10.1016/j.carbon.2007.02.034
|
[52] |
F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53(1970), No. 3, p. 1126. doi: 10.1063/1.1674108
|
[53] |
L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, and M.A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Appl. Phys. Lett., 88(2006), No. 16, art. No. 163106.
|