Di Wu, Run-kang Zhao, Chao-wu Xie, and Shuai Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1046-1053. https://doi.org/10.1007/s12613-020-1970-y
Cite this article as:
Di Wu, Run-kang Zhao, Chao-wu Xie, and Shuai Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1046-1053. https://doi.org/10.1007/s12613-020-1970-y
Research Article

Effect of curing humidity on performance of cemented paste backfill

+ Author Affiliations
  • Corresponding author:

    Di Wu    E-mail: ustb_wudi@hotmail.com

  • Received: 25 September 2019Revised: 4 November 2019Accepted: 18 December 2019Available online: 8 January 2020
  • Cemented paste backfill (CPB), a mixture of tailings, binder, and water, is widely and extensively used for the recovery of mineral resources, the prevention of ground subsidence, and the management of mine waste. When installed, the CPB is subjected to complex environmental conditions such as water content, temperature, and power, which have a significant impact on its efficiency. Thus, this study conducts a series of laboratory programs, including investigation of moisture, temperature, stress–strain relation, and microstructure to show the effect of curing humidity on the CPB behaviors. The results obtained indicate that ambient humidity can have a dramatic effect on CPB in terms of its macro performance of internal relative humidity, temperature and strength, as well as the micro expression. Typical examples of these effects on CPB include an increase in curing humidity, which favors binder hydration, and then an increase in hydration materials, temperature and peak stress in the CPB. The results obtained will lead to a better understanding of CPB’s responses to various environmental conditions.
  • loading
  • [1]
    D. Kossoff, W.E. Dubbin, M. Alfredsson, S.J. Edwards, M.G. Macklin, and K.A. Hudson-Edwards, Mine tailings dams: Characteristics, failure, environmental impacts, and remediation, Appl. Geochem., 51(2014), p. 229. doi: 10.1016/j.apgeochem.2014.09.010
    E. Yilmaz, A. Kesimal, and B. Ercidi, Strength development of paste backfill samples at long term by using two different binders, [in] Proceedings of the 8th International Symposium on Mining with Backfill, Beijing, 2004, p. 281.
    M. Fall, M. Benzaazoua, and S. Ouellet, Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Miner. Eng., 18(2005), No. 1, p. 41. doi: 10.1016/j.mineng.2004.05.012
    N. Sivakugan, R.M. Rankine, K.J. Rankine, and K.S. Rankine, Geotechnical considerations in mine backfilling in Australia, J. Cleaner Prod., 14(2006), No. 12-13, p. 1168. doi: 10.1016/j.jclepro.2004.06.007
    M. Fall, T. Belem, S. Samb, and M. Benzaazoua, Experimental characterization of the stress–strain behaviour of cemented paste backfill in compression, J. Mater. Sci., 42(2007), No. 11, p. 3914. doi: 10.1007/s10853-006-0403-2
    M. Fall, M. Benzaazoua, and E.G. Saa, Mix proportioning of underground cemented paste backfill, Tunnelling Underground Space Technol., 23(2008), No. 1, p. 80. doi: 10.1016/j.tust.2006.08.005
    L. Orejarena and M. Fall, The use of artificial neural networks to predict the effect of sulphate attack on the strength of cemented paste backfill, Bull. Eng. Geol. Environ., 69(2010), No. 4, p. 659. doi: 10.1007/s10064-010-0326-7
    D. Wu, M. Fall, and S.J. Cai, Coupled modeling of temperature distribution and evolution in cemented tailings backfill structures that contain mineral admixtures, Geotech. Geol. Eng., 30(2012), No. 4, p. 935. doi: 10.1007/s10706-012-9518-1
    D. Wu, M. Fall, and S.J. Cai, Numerical modelling of thermally and hydraulically coupled processes in hydrating cemented tailings backfill columns, Int. J. Min. Reclam. Environ., 28(2014), No. 3, p. 173. doi: 10.1080/17480930.2013.809194
    A. Kesimal, B. Ercikdi, and E. Yilmaz, The effect of desliming by sedimentation on paste backfill performance, Miner. Eng., 16(2003), No. 10, p. 1009. doi: 10.1016/S0892-6875(03)00267-X
    A. Kesimal, E. Yilmaz, B. Ercikdi, I. Alp, and H. Deveci, Effect of properties of tailings and binder on the short- and long-term strength and stability of cemented paste backfill, Mater. Lett., 59(2005), No. 28, p. 3703. doi: 10.1016/j.matlet.2005.06.042
    M. Fall and M. Benzaazoua, Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization, Cem. Concr. Res., 35(2005), No. 2, p. 301. doi: 10.1016/j.cemconres.2004.05.020
    M. Helinski, A.B. Fourie, and M. Fahey. Mechanics of early age cemented paste backfill, [in] Proceedings of the 9th International Seminar on Paste and Thickened Tailings, Limerick, 2006, p. 313.
    K.A. Klein and D. Simon, Effect of specimen composition on the strength development in cemented paste backfill, Can. Geotech. J., 43(2006), No. 3, p. 310. doi: 10.1139/t06-005
    F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, and H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng., 30(2012), p. 33. doi: 10.1016/j.mineng.2012.01.009
    Y. Wang, M. Fall, and A.X. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos., 67(2016), p. 101. doi: 10.1016/j.cemconcomp.2016.01.005
    M.L. Walske, H. McWilliam, J. Doherty, and A. Fourie, Influence of curing temperature and stress conditions on mechanical properties of cementing paste backfill, Can. Geotech. J., 53(2015), No. 1, p. 148.
    M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos., 32(2010), No. 10, p. 819. doi: 10.1016/j.cemconcomp.2010.08.002
    M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol., 114(2010), No. 3-4, p. 397. doi: 10.1016/j.enggeo.2010.05.016
    M. Fall and S.S. Samb, Effect of high temperature on strength and microstructural properties of cemented paste backfill, Fire Saf. J., 44(2009), No. 4, p. 642. doi: 10.1016/j.firesaf.2008.12.004
    M. Fall and S.S. Samb, Pore structure of cemented tailings materials under natural or accidental thermal loads, Mater. Charact., 59(2008), No. 5, p. 598. doi: 10.1016/j.matchar.2007.05.003
    H.Q. Jiang, M. Fall, and L. Cui, Yield stress of cemented paste backfill in sub-zero environments: Experimental results, Miner. Eng., 92(2016), p. 141. doi: 10.1016/j.mineng.2016.03.014
    S. Huang, K.W. Xia, and L. Qiao, Dynamic tests of cemented paste backfill: Effects of strain rate, curing time, and cement content on compressive strength, J. Mater. Sci., 46(2011), No. 15, p. 5165. doi: 10.1007/s10853-011-5449-0
    E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater., 75(2015), p. 99. doi: 10.1016/j.conbuildmat.2014.11.008
    E. Yilmaz, M. Benzaazoua, T. Belem, and B. Bussière, Effect of curing under pressure on compressive strength development of cemented paste backfill, Miner. Eng., 22(2009), No. 9-10, p. 772. doi: 10.1016/j.mineng.2009.02.002
    E. Yilmaz, T. Belem, and M. Benzaazoua, Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill, Eng. Geol., 168(2014), p. 23. doi: 10.1016/j.enggeo.2013.10.024
    O.Z. Cebeci, Strength of concrete in warm and dry environment, Mater. Struct., 20(1987), No. 4, p. 270. doi: 10.1007/BF02485923
    J.J. Beaudoin, L. Raki, R. Alizadeh, and L. Mitchell, Dimensional change and elastic behavior of layered silicates and Portland cement paste, Cem. Concr. Compos., 32(2010), No. 1, p. 25. doi: 10.1016/j.cemconcomp.2009.09.004
    R. Alizadeh, J.J. Beaudoin, and L. Raki, Mechanical properties of calcium silicate hydrates, Mater. Struct., 44(2011), No. 1, p. 13. doi: 10.1617/s11527-010-9605-9
    C. Yalçınkaya and H. Yazıcı, Effects of ambient temperature and relative humidity on early-age shrinkage of UHPC with high-volume mineral admixtures, Constr. Build. Mater., 144(2017), p. 252. doi: 10.1016/j.conbuildmat.2017.03.198
    H. Samouh, E. Rozière, and A. Loukili, Experimental and numerical study of the relative humidity effect on drying shrinkage and cracking of self-consolidating concrete, Cem. Concr. Res., 115(2019), p. 519. doi: 10.1016/j.cemconres.2018.08.008
    GB/T50081—2009, Standard for Test Methods of Concrete Physical and Mechanical Properties, China Architecture and Building Press, Beijing, 2019.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Share Article

    Article Metrics

    Article views (919) PDF downloads(15) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint