Xiao-qian Pan, Jian Yang, Joohyun Park, and Hideki Ono, Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp.1489-1498. https://dx.doi.org/10.1007/s12613-020-1973-8
Cite this article as: Xiao-qian Pan, Jian Yang, Joohyun Park, and Hideki Ono, Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp.1489-1498. https://dx.doi.org/10.1007/s12613-020-1973-8

Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method

  • The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface. A quantitative electrolysis method was used to compare and evaluate the three-dimensional morphology, size, composition, quantity, and distribution of inclusions in the defect and non-defect zone of automobile exposed panel. The Al2O3 inclusions were observed to be aggregated or chain-like shape along with the sliver defect of about 3–10 μm. The aggregation sections of the Al2O3 inclusions are distributed discretely along the rolling direction, with a spacing of 3–7 mm, a length of 6–7 mm, and a width of about 3 mm. The inclusion area part is 0.04%–0.16% with an average value of 0.08%, the inclusion number density is 40 mm−2 and the inclusion average spacing is 25.13 μm. The inclusion spacing is approximately 40–160 μm, with an average value of 68.76 μm in chain-like inclusion parts. The average area fraction and number density of inclusions in the non-defect region were reduced to about 0.002% and 1–2 mm−2, respectively, with the inclusion spacing of 400 μm and the size of Al2O3 being 1–3 μm.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return