Cite this article as: |
Qian Zhou, Juan-hong Liu, Ai-xiang Wu, and Hong-jiang Wang, Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1191-1202. https://doi.org/10.1007/s12613-020-1977-4 |
Juan-hong Liu E-mail: juanhong1966@hotmail.com
[1] |
Z.F. Bian, X.X. Miao, S.G. Lei, S.E. Chen, W.F. Wang, and S. Struthers, The challenges of reusing mining and mineral-processing wastes, Science, 337(2012), No. 6095, p. 702. doi: 10.1126/science.1224757
|
[2] |
M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol., 114(2010), No. 3-4, p. 397. doi: 10.1016/j.enggeo.2010.05.016
|
[3] |
W. Sun, A.X. Wu, K.P. Hou, Y. Yang, L. Liu, and Y.M. Wen, Experimental study on the microstructure evolution of mixed disposal paste in surface subsidence areas, Minerals, 6(2016), No. 2, p. 43. doi: 10.3390/min6020043
|
[4] |
W.B. Xu, P.W. Cao, and M.M. Tian, Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents, Minerals, 8(2018), No. 4, p. 167. doi: 10.3390/min8040167
|
[5] |
A.X. Wu, Y. Yang, H.Y. Cheng, S.M. Chen, and Y. Han, Status and prospects of paste technology in China, Chin. J. Eng., 40(2018), No. 5, p. 517.
|
[6] |
J.H. Liu, Y.C. Zhou, A.X. Wu, and H.J. Wang, Reconstruction of broken Si–O–Si bonds in iron ore tailings (IOTs) in concrete, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1329. doi: 10.1007/s12613-019-1811-z
|
[7] |
S.H. Yin, Y.J. Shao, A.X. Wu, Y.M. Wang, and X. Chen, Expansion and strength properties of cemented backfill using sulphidic mill tailings, Constr. Build. Mater., 165(2018), p. 138. doi: 10.1016/j.conbuildmat.2018.01.005
|
[8] |
B. Koohestani, B. Bussiere, T. Belem, and A. Koubaa, Influence of polymer powder on properties of cemented paste backfill, Int. J. Miner. Process., 167(2017), p. 1. doi: 10.1016/j.minpro.2017.07.013
|
[9] |
J.Y. Wu, M.M. Feng, Z.Q. Chen, X.B. Mao, G.S. Han, and Y.M. Wang, Particle size distribution effects on the strength characteristic of cemented paste backfill, Minerals, 8(2018), No. 8, p. 322. doi: 10.3390/min8080322
|
[10] |
S. Cao, E. Yilmaz, and W.D. Song, Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill, Minerals, 8(2018), No. 8, p. 352. doi: 10.3390/min8080352
|
[11] |
E. Yilmaz, T. Belem, and M. Benzaazoua, Study of physico-chemical and mechanical characteristics of consolidated and unconsolidated cemented paste backfills, Gospod. Surowcami Miner, 29(2013), No. 1, p. 81. doi: 10.2478/gospo-2013-0006
|
[12] |
E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ., 32(2018), No. 4, p. 273. doi: 10.1080/17480930.2017.1285858
|
[13] |
S. Cao, E. Yilmaz, and W.D. Song, Dynamic response of cement-tailings matrix composites under SHPB compression load, Constr. Build. Mater., 186(2018), p. 892. doi: 10.1016/j.conbuildmat.2018.08.009
|
[14] |
X. Zhao, A. Fourie, and C.C. Qi, An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1206. doi: 10.1007/s12613-019-1885-7
|
[15] |
A.X. Wu, Y. Wang, H.J. Wang, S.H. Yin, and X.X. Miao, Coupled effects of cement type and water quality on the properties of cemented paste backfill, Int. J. Miner. Process., 143(2015), p. 65. doi: 10.1016/j.minpro.2015.09.004
|
[16] |
J.X. Fu, W.D. Song, Y.Y. Tan, and C.C. Sorrell, Study on microstructural evolution and strength growth and fracture mechanism of cemented paste backfill, Adv. Mater. Sci. Eng., 2016(2016), art. No. 8792817.
|
[17] |
J.R. Zheng, L.J. Guo, X.X. Sun, W.C. Li, and Q. Jia, Study on the strength development of cemented backfill body from lead-zinc mine tailings with sulphide, Adv. Mater. Sci. Eng., 2018(2018), art. No. 7278014.
|
[18] |
Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. Miner. Metall. Mater., 26(2019), No. 4, p. 404. doi: 10.1007/s12613-019-1749-1
|
[19] |
E. Yilmaz, T. Belem, B. Bussière, and M. Benzaazoua, Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills, Cem. Concr. Compos., 33(2011), No. 6, p. 702. doi: 10.1016/j.cemconcomp.2011.03.013
|
[20] |
F. Cihangir, B. Ercikdi, A. Kesimal, H. Deveci, and F. Erdemir, Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties, Miner. Eng., 83(2015), p. 117. doi: 10.1016/j.mineng.2015.08.022
|
[21] |
A. Tariq and E.K. Yanful, A review of binders used in cemented paste tailings for underground and surface disposal practices, J. Environ. Manage., 131(2013), p. 138. doi: 10.1016/j.jenvman.2013.09.039
|
[22] |
H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, and J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1594. doi: 10.1007/s12613-019-1901-y
|
[23] |
L. Yang, J.P. Qiu, H.Q. Jiang, S.Q. Hu, H. Li, and S.B. Li, Use of cemented super-fine unclassified tailings backfill for control of subsidence, Minerals, 7(2017), No. 11, p. 216. doi: 10.3390/min7110216
|
[24] |
J.P. Qiu, L. Yang, X.G. Sun, J. Xing, and S.B. Li, Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill, Minerals, 7(2017), No. 4, p. 58. doi: 10.3390/min7040058
|
[25] |
X. Chen, X. Shi, J. Zhou, X.H. Du, Q.S. Chen, and X.Y. Qiu, Effect of overflow tailings properties on cemented paste backfill, J. Environ. Manage., 235(2019), p. 133. doi: 10.1016/j.jenvman.2019.01.040
|
[26] |
W.C. Li and M. Fall, Sulphate effect on the early age strength and self-desiccation of cemented paste backfill, Constr. Build. Mater., 106(2016), p. 296. doi: 10.1016/j.conbuildmat.2015.12.124
|
[27] |
O. Nasir and M. Fall, Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages, Tunnelling Underground Space Technol., 25(2010), No. 1, p. 9. doi: 10.1016/j.tust.2009.07.008
|
[28] |
Y. Wang, M. Fall, and A.X. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos., 67(2016), p. 101. doi: 10.1016/j.cemconcomp.2016.01.005
|
[29] |
S.H. Yin, A.X. Wu, K.J. Hu, Y. Wang, and Y.K. Zhang, The effect of solid components on the rheological and mechanical properties of cemented paste backfill, Miner. Eng., 35(2012), p. 61. doi: 10.1016/j.mineng.2012.04.008
|
[30] |
G.Z. Jiang, A.X Wu, Y. Wang, and W.T. Lan, Low cost and high efficiency utilization of hemihydrate phosphogypsum: Used as binder to prepare filling material, Constr. Build. Mater., 167(2018), p. 263. doi: 10.1016/j.conbuildmat.2018.02.022
|
[31] |
Y. Liu, C. Lu, H.Q. Zhang, and J.P. Li, Experimental study on chemical activation of recycled powder as a cementitious material in mine paste backfilling, Environ. Eng. Res., 21(2016), No. 4, p. 341. doi: 10.4491/eer.2015.129
|
[32] |
B. Koohestani, T. Belem, A. Koubaa, and B. Bussière, Experimental investigation into the compressive strength development of cemented paste backfill containing Nano-silica, Cem. Concr. Compos., 72(2016), p. 180. doi: 10.1016/j.cemconcomp.2016.06.016
|
[33] |
B. Koohestani, A. Koubaa, T. Belem, B. Bussière, and H. Bouzahzah, Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler, Constr. Build. Mater., 121(2016), p. 222. doi: 10.1016/j.conbuildmat.2016.05.118
|
[34] |
L. Yang, E. Yilmaz, J.W. Li, H. Liu, and H.Q. Jiang, Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents, Constr. Build. Mater., 187(2018), p. 290. doi: 10.1016/j.conbuildmat.2018.07.155
|
[35] |
B. Koohestani, A.K. Darban, and P. Mokhtari, A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill, Constr. Build. Mater., 173(2018), p. 180. doi: 10.1016/j.conbuildmat.2018.03.265
|
[36] |
D. Ouattara, T. Belem, M. Mbonimpa, and A. Yahia, Effect of superplasticizers on the consistency and unconfined compressive strength of cemented paste backfills, Constr. Build. Mater., 181(2018), p. 59. doi: 10.1016/j.conbuildmat.2018.05.288
|
[37] |
J. Zhang, H.W. Deng, A. Taheri, J.R. Deng, and B. Ke, Effects of superplasticizer on the hydration, consistency, and strength development of cemented paste backfill, Minerals, 8(2018), No. 9, p. 381. doi: 10.3390/min8090381
|
[38] |
M.B.C. Mangane, R. Argane, R. Trauchessec, A. Lecomte, and M. Benzaazoua, Influence of superplasticizers on mechanical properties and workability of cemented paste backfill, Miner. Eng., 116(2018), p. 3. doi: 10.1016/j.mineng.2017.11.006
|
[39] |
B. Ercikdi, H. Baki, and M. Izki, Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill, J. Environ Manage., 115(2013), p. 5. doi: 10.1016/j.jenvman.2012.11.014
|
[40] |
G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Compressive strength characteristics of cemented tailings backfill with alkali-activated slag, Appl. Sci., 8(2018), No. 9, p. 1537. doi: 10.3390/app8091537
|
[41] |
H.Q. Jiang, Z.J. Qi, E. Yilmaz, J. Han, J.P. Qiu, and C.L. Dong, Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills, Constr. Build. Mater., 218(2019), p. 689. doi: 10.1016/j.conbuildmat.2019.05.162
|
[42] |
H.Q. Jiang, J. Han, Y.H. Li, E. Yilmaz, Q. Sun, and J.P. Liu, Relationship between ultrasonic pulse velocity and uniaxial compressive strength for cemented paste backfill with alkali-activated slag, Nondestr. Test. Eval. (2019). DOI: 10.1080/10589759.2019.1679140
|
[43] |
M. Gao, J.H. Liu, A.X. Wu, and X.H. Zhao, Corrosion and deterioration mechanism of rich-water filling materials in typical chloride salt environment, J. Cent. South. Univ. Sci. Technol., 47(2016), No. 8, p. 2776.
|
[44] |
A.X. Wu, Y. Wang, and H.J. Wang, Status and prospects of the paste backfill technology, Met. Mine, 2016, No. 7, p. 1.
|
[45] |
N.R. Yang and W.H. Yue, The Handbook of Inorganic Non-metallic Materials Atlas, Wuhan University of Technology Press, Wuhan, 2000, p. 4.
|
[46] |
D.P. Mishra and S.K. Das, One-dimensional consolidation of sedimented stowed pond ash and pond ash-lime mixture deposits-a comparative study, Part. Sci. Technol., 33(2015), No. 2, p. 172. doi: 10.1080/02726351.2014.947662
|