Hong-mei Zhang, Yan Li, Ling Yan, Fang-fang Ai, Yang-yang Zhu, and Zheng-yi Jiang, Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1525-1535. https://doi.org/10.1007/s12613-020-1978-3
Cite this article as:
Hong-mei Zhang, Yan Li, Ling Yan, Fang-fang Ai, Yang-yang Zhu, and Zheng-yi Jiang, Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1525-1535. https://doi.org/10.1007/s12613-020-1978-3
Research Article

Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand

+ Author Affiliations
  • Corresponding authors:

    Hong-mei Zhang    E-mail: zhanghm@ustl.edu.cn

    Yan Li    E-mail: Ya2323liyan@sina.com

    Zheng-yi Jiang    E-mail: jiang@uow.edu.au

  • Received: 4 November 2019Revised: 23 December 2019Accepted: 25 December 2019Available online: 22 October 2020
  • To simulate the wear and corrosion behavior of high-strength EH47 hull steel in a complicated marine environment in which seawater, sea ice, and sea sand coexist, accelerated wear and corrosion tests were performed in a laboratory setting using a tribometer. The effect of large loads on the behavior of abrasion and corrosion in a 3.5wt% NaCl solution with ice and sand to simulate a marine environment were investigated. The experimental results showed that the coefficient of friction (COF) decreases with increasing working load; meanwhile, the loading force and sand on the disk strongly influence the COF. The mechanisms of friction and the coupling effect of abrasion and corrosion in the 3.5wt% NaCl solution with sand were the wear and corrosion mechanisms; furthermore, the wear mechanism exerted the predominant effect.

  • loading
  • [1]
    J.C. Zhang, F.L. Zuo, J.Y. Jiang, H. Ma, and D. Song, Microstructure and properties of seawater corrosion resistant rebar steel 00Cr10MoV, J. Chin. Soc. Corros. Prot., 36(2016), No. 4, p. 363.
    [2]
    H.Y. Guo, Y. Zhang, Y.C. He, and H.M. Xu, Development of low alloy seawater corrosion resistant steel, Iron Steel, 48(2013), No. 9, p. 71.
    [3]
    A. Toro, A. Sinatora, D.K. Tanaka, and A.P. Tschiptschin, Corrosion–erosion of nitrogen bearing martensitic stainless steels in seawater–quartz slurry, Wear, 251(2001), No. 1-12, p. 1257. doi: 10.1016/S0043-1648(01)00765-7
    [4]
    M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. de La Fuente, Weathering steels: From empirical development to scientific design. A review, Corros. Sci., 83(2014), p. 6. doi: 10.1016/j.corsci.2014.03.006
    [5]
    J. Geringer, J. Pellier, F. Cleymand, and B. Forest, Atomic force microscopy investigations on pits and debris related to fretting-corrosion between 316L SS and PMMA, Wear, 292-293(2012), p. 207. doi: 10.1016/j.wear.2012.05.008
    [6]
    A. Iwabuchi, T. Sasaki, K. Hori, and Y. Tatsuyanagi, Tribological properties of SUS304 steel in seawater: Electrochemical approach to the wear behavior, JSME Int. J. Ser. I, 35(1992), No. 1, p. 117.
    [7]
    A. Iwabuchi, T. Sonoda, H. Yashiro, and T. Shimizu, Application of potential pulse method to the corrosion behavior of the fresh surface formed by scratching and sliding in corrosive wear, Wear, 225-229(1999), p. 181. doi: 10.1016/S0043-1648(98)00357-3
    [8]
    A. Tahara and T. Shinohara, Influence of the alloy element on corrosion morphology of the low alloy steels exposed to the atmospheric environments, Corros. Sci., 47(2005), No. 10, p. 2589. doi: 10.1016/j.corsci.2004.10.019
    [9]
    S. Mischler, Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation, Tribol. Int., 41(2008), No. 7, p. 573. doi: 10.1016/j.triboint.2007.11.003
    [10]
    ASTM International, ASTM Standard G119–09: Standard Guide for Determining Synergism between Wear and Corrosion, ASTM International, West Conshohocken, 2016.
    [11]
    G.D. Wang, Steel for Marine Applications, Chemical Industry Press, Beijing, 2017.
    [12]
    D. López, N.A. Falleiros, and A.P. Tschiptschin, Effect of nitrogen on the corrosion–erosion synergism in an austenitic stainless steel, Tribol. Int., 44(2011), No. 5, p. 610. doi: 10.1016/j.triboint.2010.12.013
    [13]
    A. Iwabuchi, T. Tsukamoto, Y. Tatsuyanagi, N. Kawahara, and T. Nonaka, Electrochemical approach to corrosive wear of SKD61 die steel in Na2SO4 solution, Wear, 156(1992), No. 2, p. 301. doi: 10.1016/0043-1648(92)90224-V
    [14]
    X.G. Li, Corrosion Behaviors and Mechanisms of Marine Engineering Materials, Chemical Industry Press, Beijing, 2017.
    [15]
    S.W. Watson, F.J. Friedersdorf, B.W. Madsen, and S.D. Cramer, Methods of measuring wear corrosion synergism , Wear, 181-183(1995), p. 476. doi: 10.1016/0043-1648(94)07108-X
    [16]
    X. Zhang, S.W. Yang, W.H. Zhang, H. Guo, and X.L. He, Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet–dry cycles, Corros. Sci., 82(2014), p. 165. doi: 10.1016/j.corsci.2014.01.016
    [17]
    I. Serre, N. Celati, and R.M. Pradeilles-Duval, Tribological and corrosion wear of graphite ring against Ti6Al4V disk in artificial sea water, Wear, 252(2002), No. 9-10, p. 711. doi: 10.1016/S0043-1648(02)00030-3
    [18]
    A. Iwabuchi, J.W. Lee, and M. Uchidate, Synergistic effect of fretting wear and sliding wear of Co-alloy and Ti-alloy in Hank’s solution, Wear, 263(2007), No. 1-6, p. 492. doi: 10.1016/j.wear.2007.01.102
    [19]
    Y. Li, L. Qu, and F.H. Wang, The electrochemical corrosion behavior of TiN and (Ti,Al)N coatings in acid and salt solution, Corros. Sci., 45(2003), No. 7, p. 1367. doi: 10.1016/S0010-938X(02)00223-8
    [20]
    N. Zaveri, M. Mahapatra, A. Deceuster, Y. Peng, L.J. Li, and A.H. Zhou, Corrosion resistance of pulsed laser-treated Ti–6Al–4V implant in simulated biofluids, Electrochim. Acta, 53(2008), No. 15, p. 5022. doi: 10.1016/j.electacta.2008.01.086
    [21]
    K. Selvama, A. Ayyagarib, H.S. Grewala, S. Mukherjeeb, and H.S. Aroraa, Enhancing the erosion–corrosion resistance of steel through friction stir processing, Wear, 386-387(2017), p. 129. doi: 10.1016/j.wear.2017.06.009
    [22]
    Q.N. Song, Y.G. Zheng, S.L. Jiang, D.R. Ni, and Z.Y. Ma, Comparison of corrosion and cavitation erosion behaviors between the as-cast and friction-stir-processed nickel aluminum bronze, Corrosion, 69(2013), No. 11, p. 1111. doi: 10.5006/0984
    [23]
    Q.N. Song, Y.G. Zheng, D.R. Ni, and Z.Y. Ma, Corrosion and cavitation erosion behaviors of friction stir processed Ni–Al bronze: Effect of processing parameters and position in the stirred zone, Corrosion, 70(2014), No. 3, p. 261. doi: 10.5006/1070
    [24]
    Y.Y. Shen, Y.H. Dong, H.D. Li, X.T. Chang, D.S. Wang, Q.H. Li, and Y.S. Yin, The influence of low temperature on the corrosion of EH40 steel in a NaCl solution, Int. J. Electrochem. Sci., 13(2018), No. 7, p. 6310.
    [25]
    B.G. Prakashaiah, D.V. Kumar, A.A. Pandith, A.N. Shetty, and B.E.A. Rani, Corrosion inhibition of 2024-T3 aluminum alloy in 3.5% NaCl by thiosemicarbazone derivatives, Corros. Sci., 136(2018), p. 326. doi: 10.1016/j.corsci.2018.03.021
    [26]
    M. Lebrini, F. Bentiss, H. Vezin, and M. Lagrenée, The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadiazole: Structure–activity correlation, Corros. Sci., 48(2006), No. 5, p. 1279. doi: 10.1016/j.corsci.2005.05.001
    [27]
    O. Senhaji, R. Taouil, M.K. Skalli, M. Bouachrine, B. Hammouti, M. Hamidi, and S.S. Al-Deyab, Experimental and theoretical study for corrosion inhibition in normal hydrochloric acid solution by some new phophonated compounds, Int. J. Electrochem. Sci, 6(2011), No. 12, p. 6290.
    [28]
    K. Sasaki and G.T. Burstein, Observation of a threshold impact energy required to cause passive film rupture during slurry erosion of stainless steel, Philos. Mag. Lett., 80(2000), No. 7, p. 489. doi: 10.1080/09500830050057198
    [29]
    P. Henry, J. Takadoum, and P. Berçot, Tribocorrosion of 316L stainless steel and TA6V4 alloy in H2SO4 media, Corros. Sci., 51(2009), No. 6, p. 1308. doi: 10.1016/j.corsci.2009.03.015
    [30]
    N. Papageorgiou, A. von Bonin and N. Espallargas, Tribocorrosion mechanisms of NiCrMo-625 alloy: An electrochemical modeling approach, Tribol. Int., 73(2014), p. 177. doi: 10.1016/j.triboint.2014.01.018
    [31]
    S. Akonko, D.Y. Li, and M. Ziomek-Moroz, Effects of cathodic protection on corrosive wear of 304 stainless steel, Tribol. Lett., 18(2005), No. 3, p. 405. doi: 10.1007/s11249-004-3205-1
    [32]
    M.R. Bateni, J.A. Szpunar, X. Wang, and D.Y. Li, Wear and corrosion wear of medium carbon steel and 304 stainless steel, Wear, 260(2006), No. 1-2, p. 116. doi: 10.1016/j.wear.2004.12.037
    [33]
    H.R. Wu, Q.L. Bi, S.Y. Zhu, J. Yang, and W.M. Liu, Friction and wear properties of Babbitt alloy 16-16-2 under sea water environment, Tribol. Int., 44(2011), No. 10, p. 1161. doi: 10.1016/j.triboint.2011.05.007
    [34]
    N.M. Lin, P. Zhou, H.W. Zhou, J.W. Guo, H.Y. Zhang, J.J. Zou, Y. Ma, P.J. Han, and B. Tang, Pack boronizing of P110 oil casing tube steel to combat wear and corrosion, Int. J. Electrochem. Sci., 10(2015), No. 3, p. 2694.
    [35]
    T. Balusamy and T. Nishimura, In-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy, Electrochim. Acta, 199(2016), p. 305. doi: 10.1016/j.electacta.2016.02.034
    [36]
    C.J. Hu and P.H. Chiu, Wear and corrosion resistance of pure titanium subjected to aluminization and coated with a microarc oxidation ceramic coating, Int. J. Electrochem. Sci., 10(2015), No. 5, p. 4290.
    [37]
    J.H. Huang, Z.G. Li, and Y.H. Qian, Accelerated corrosion behavior of seawater corrosion resistant Q345C-NHY3 steel in artificial simulated environments, Shanghai Met., 28(2006), No. 4, p. 6.
    [38]
    K.E. García, A.L. Morales, C.A. Barrero, and J.M. Greneche, New contributions to the understanding of rust layer formation in steels exposed to a total immersion test, Corros. Sci., 48(2006), No. 9, p. 2813. doi: 10.1016/j.corsci.2005.09.002
    [39]
    F.R. Pérez, C.A. Barrero, A.R.H. Walker, K.E. García, and K. Nomura, Effects of chloride concentration, immersion time and steel composition on the spinel phase formation, Mater. Chem. Phys., 117(2009), No. 1, p. 214. doi: 10.1016/j.matchemphys.2009.05.045
    [40]
    M. Jeannin, D. Calonnec, R. Sabot, and P.H. Refait, Role of a clay sediment deposit on the corrosion of carbon steel in 0.5 mol·L–1 NaCl solutions, Corros. Sci., 52(2010), No. 6, p. 2026. doi: 10.1016/j.corsci.2010.02.033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2181) PDF Downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return