Mu-yu Li, Dan Yao, Liu Yang, Hao-ran Wang,  and Ying-ping Guan, Kinetic analysis of austenite transformation for B1500HS high-strength steel during continuous heating, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1508-1516. https://doi.org/10.1007/s12613-020-1979-2
Cite this article as:
Mu-yu Li, Dan Yao, Liu Yang, Hao-ran Wang,  and Ying-ping Guan, Kinetic analysis of austenite transformation for B1500HS high-strength steel during continuous heating, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1508-1516. https://doi.org/10.1007/s12613-020-1979-2
Research Article

Kinetic analysis of austenite transformation for B1500HS high-strength steel during continuous heating

+ Author Affiliations
  • Corresponding author:

    Ying-ping Guan    E-mail: gyp@ysu.edn.cn

  • Received: 28 September 2019Revised: 22 December 2019Accepted: 26 December 2019Available online: 8 January 2020
  • The dilatometric curves of B1500HS high-strength steel at different heating rates were measured by a Gleeble-3800 thermal simulator and analyzed to investigate the effect of heating rate on austenitization. Results show that the value of starting temperature and ending temperature of austenite transformation increase with the rise of heating rates, whereas the temperature interval of austenite formation decreases. The kinetic equation of austenite transformation was solved using the Johnson–Mehl–Avrami model, and the related parameters of the equation were analyzed by the Kissinger method. For those calculations, the activation energy of austenite transformation is 1.01 × 106 J/mol, and the values of kinetic parameters n and ln k0 are 0.63 and 103.03, respectively. The relationship between the volume fraction of austenite and the heating time at different heating rates could be predicted using the kinetic equation. The predicted and experimental results were compared to verify the accuracy of the kinetic equation. The microstructure etched by different corrosive solutions was analyzed, and the reliability of kinetic equation was further verified from the microscopic perspective.

  • loading
  • [1]
    P. Samadian, M.H. Parsa, and A. Shakeri, Determination of proper austenitization temperatures for hot stamping of AISI 4140 steel, J. Mater. Eng. Perform., 23(2014), No. 4, p. 1138. doi: 10.1007/s11665-014-0896-9
    [2]
    K. Wang, Z.B. Wang, P.X. Liu, and Y.S. Zhang, Influences of austenitization parameters on properties of martensitic stainless steel in hot stamping, Adv. Mater. Res., 1063(2014), p. 194. doi: 10.4028/www.scientific.net/AMR.1063.194
    [3]
    H.T. Jiang, D. Tang, Z.L. Mi, and Y.L. Chen, Influence of processing parameters of hot stamping to mechanical properties of martensite steel and segregation of boron, J. Mater. Eng., 2010, No. 2, p. 69.
    [4]
    H.L. Cai, P.J. Du, H.L. Yi, and D. Wu, Effects of austenitizing temperature on microstructure and properties of hot-formed steel, Adv. Mater. Res., 1063(2014), No. 6, p. 89.
    [5]
    Z.W. Gu, J. Meng, X. Li, H. Xu, S.B. Yu, and Y.B. Shen, Research of optimization of the heating parameters of the ultrahigh strength steel’s austenization in hot stamping process, J. Jilin Univ. Eng. Technol. Ed., 42(2011), No. S2, p. 194.
    [6]
    X.T. Li, S.M. Jiang, Q.F. Zhang, H.X. Teng, H.F. Zhao, and M.D. Huang, Kinetics model of non-isothermal austenite phase transformation for hot stamping boron steel, Iron Steel, 52(2017), No. 8, p. 92.
    [7]
    R.K. Chen, J.F. Gu, Z.L. Guo, and J.S. Pan, Austenitization kinetics of 30Cr2Ni4MoV steel, Trans. Mater. Heat Treat., 34(2013), No. 1, p. 170.
    [8]
    H.P. Li, L.F. He, G.Q. Zhao, and L. Zhang, Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson–Cook model, Mater. Sci. Eng. A, 580(2013), p. 330. doi: 10.1016/j.msea.2013.05.023
    [9]
    X. Su and Z.Z. Chen, Constitutive equation and rheological behavior of the high strength steel B1500HS at high temperature, J. Plast. Eng., 23(2016), No. 1, p. 84.
    [10]
    B.T. Tang, Q.L. Wang, Z.Q. Wang, and W. Zheng, The influence of deformation history on microstructure and microhardness during the hot stamping process of boron steel B1500HS, Int. J. Mater. Prod. Technol., 46(2013), No. 4, p. 255. doi: 10.1504/IJMPT.2013.058935
    [11]
    H.P. Li, R. Jiang, L.F. He, H. Yang, C. Wang, and C.Z. Zhang, Influence of deformation degree and cooling rate on microstructure and phase transformation temperature of B1500HS steel, Acta Metall. Sin. Engl. Lett., 31(2018), p. 33. doi: 10.1007/s40195-017-0594-3
    [12]
    Y.H. Shen, Y.L. Song, L. Hua, and J. Lu, Influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts, J. Mater. Eng. Perform., 26(2017), No. 4, p. 1830. doi: 10.1007/s11665-017-2579-9
    [13]
    B.T. Tang, Z.J. Yuan, G. Cheng, L.L. Huang, W. Zheng, and H. Xie, Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state, Mater. Sci. Eng. A, 585(2013), p. 304. doi: 10.1016/j.msea.2013.07.059
    [14]
    L.F. He, G.Q. Zhao, H.P. Li, and N. Xiang, Optimization of quenching parameters for hot stamping boron steel B1500HS based on response surface methodology, J. Mech. Eng., 47(2011), No. 8, p. 77. doi: 10.3901/JME.2011.08.077
    [15]
    B. Wang, Q.Q. Duan, G. Yao, J.C. Pang, Z.F. Zhang, L.Wang, and X.W. Li, Fatigue fracture behaviour of spot welded B1500HS steel under tensile-shear load, Fatigue Fract. Eng. Mater. Struct., 38(2015), No. 8, p. 914. doi: 10.1111/ffe.12289
    [16]
    C.X. Liu, Y.C. Zhang, D.T. hang, and Z.S. Yan, Kinetics of isochronal austenization in modified high Cr ferritic heat-resistant steel, Appl. Phys. A, 105(2011), No. 4, p. 949. doi: 10.1007/s00339-011-6517-7
    [17]
    N. Li, J. Lin, D.S. Balint, and T.A. Dean, Experimental characterisation of the effects of thermal conditions on austenite formation for hot stamping of boron steel, J. Mater. Process. Technol., 231(2016), p. 254. doi: 10.1016/j.jmatprotec.2015.12.008
    [18]
    Y. Li, J.D. Li, T.L. Fu, Z.D. Wang, and Y.J. Liu, New heating technology of hot stamping, Heat Treat. Met., 39(2014), No. 7, p. 66.
    [19]
    F.G. Caballero, C. Capdevila, and C.G. De Andrés, Modelling of kinetics and dilatometric behaviour of austenite formation in a low-carbon steel with a ferrite plus pearlite initial microstructure, J. Mater. Sci., 37(2002), No. 16, p. 3533. doi: 10.1023/A:1016579510723
    [20]
    M.P. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys., 9(1941), No. 2, p. 177. doi: 10.1063/1.1750872
    [21]
    W. Zhang, J.W. Elmer, and T. DebRoy, Kinetics of ferrite to austenite transformation during welding of 1005 steel, Scripta Mater., 46(2002), No. 10, p. 753. doi: 10.1016/S1359-6462(02)00040-4
    [22]
    H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem., 29(1957), No. 11, p. 1702. doi: 10.1021/ac60131a045
    [23]
    T. Ozawa, Kinetic analysis of derivative curves in thermal analysis, J. Therm. Anal., 2(1970), No. 3, p. 301. doi: 10.1007/BF01911411
    [24]
    H.P. Li, K. Gai, L.F. He, C.Z. Zhang, H.Z. Cui, and M.S. Li, Non-isothermal phase-transformation kinetics model for evaluating the austenization of 55CrMo steel based on Johnson–Mehl–Avrami equation, Mater. Des., 92(2016), p. 731. doi: 10.1016/j.matdes.2015.12.110
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(2566) PDF Downloads(55) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return