Chao Pan, Xiao-jun Hu, Jian-chao Zheng, Ping Lin, and Kuo-chih Chou, Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1499-1507. https://doi.org/10.1007/s12613-020-1981-8
Cite this article as:
Chao Pan, Xiao-jun Hu, Jian-chao Zheng, Ping Lin, and Kuo-chih Chou, Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1499-1507. https://doi.org/10.1007/s12613-020-1981-8
Research Article

Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel

+ Author Affiliations
  • Corresponding author:

    Xiao-jun Hu    E-mail: huxiaojun@ustb.edu.cn

  • Received: 3 November 2019Revised: 3 January 2020Accepted: 7 January 2020Available online: 8 January 2020
  • The effect of three heat processes with different calcium contents on the evolution of inclusions during the ladle furnace refining process of AISI 321 stainless steel was investigated. The size, morphology, and composition of the inclusions were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. After the addition of aluminum and titanium, the primary oxide in the AISI 321 stainless steel was an Al2O3–MgO–TiOx complex oxide, in which the mass ratio of Al2O3/MgO was highly consistent with spinel (MgO·Al2O3). After calcium treatment, the calcium content in the oxide increased significantly. Thermodynamic calculations show that when the Ti content was 0.2wt%, the Al and Ca contents were less than 0.10wt% and 0.0005wt%, respectively, which was beneficial for the formation of liquid inclusions in molten steel. Moreover, the modification mechanism of calcium on TiN-wrapped oxides in combination with temperature changes was discussed.

  • loading
  • [1]
    X.F. Bai, Y.H. Sun, R.M. Chen, Y.M. Zhang, and Y.F. Cai, Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 573. doi: 10.1007/s12613-019-1766-0
    [2]
    C. Gu, Y.P. Bao, P. Gan, M. Wang, and J.S. He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 623. doi: 10.1007/s12613-018-1609-4
    [3]
    X. Yin, Y.H. Sun, Y.D. Yang, X.F. Bai, M. Barati, and A. Mclean, Formation of inclusions in Ti-stabilized 17Cr austenitic stainless steel, Metall. Mater. Trans. B, 47(2016), No. 6, p. 3274. doi: 10.1007/s11663-016-0681-2
    [4]
    J.J. Pak, J.O. Jo, S.I. Kim, W.Y. Kim, T.I. Chung, S.M. Seo, J.H. Park, and D.S. Kim, Thermodynamics of titanium and oxygen dissolved in liquid iron equilibrated with titanium oxides, ISIJ Int., 47(2007), No. 1, p. 16. doi: 10.2355/isijinternational.47.16
    [5]
    M. Haj, H. Mansouri, R. Vafaei, G.R. Ebrahimi, and A. Kanani, Hot compression deformation behavior of AISI 321 austenitic stainless steel, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 529. doi: 10.1007/s12613-013-0761-0
    [6]
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, and R. Arrabal, Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels, Acta Mater., 55(2007), No. 7, p. 2239. doi: 10.1016/j.actamat.2006.11.021
    [7]
    B. Ozturk, R. Matway, and R. J. Fruehan, Thermodynamics of inclusion formation in Fe−Cr−Ti−N alloys, Metall. Mater. Trans. B, 26(1995), No. 3, p. 563. doi: 10.1007/BF02653875
    [8]
    W.J. Ma, Y.P. Bao, L.H. Zhao, and M. Wang, Control of the precipitation of TiN inclusions in gear steels, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 234. doi: 10.1007/s12613-014-0900-2
    [9]
    Y. Gao and K. Sorimachi, Formation of clogging materials in an immersed nozzle during continuous casting of titanium stabilized stainless steel, ISIJ Int., 33(1993), No. 2, p. 291. doi: 10.2355/isijinternational.33.291
    [10]
    H. Cui, Y.P. Bao, M. Wang, and W.S. Wu, Clogging behavior of submerged entry nozzles for Ti-bearing IF steel, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 154. doi: 10.1007/s12613-010-0206-y
    [11]
    R. Wang, Y.P. Bao, Z.J. Yan, D.Z. Li, and Y. Kang, Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 178. doi: 10.1007/s12613-019-1722-z
    [12]
    D.G. Zhou, J. Fu, X.C. Chen, and J. Li, Precipitation behavior of TiN in bearing steel, J. Mater. Sci. Technol., 19(2003), No. 2, p. 184. doi: 10.1179/026708303225009409
    [13]
    S.B. Lee, J.H. Choi, H.G. Lee, P.C.H. Rhee, and S.M. Jung, Aluminum deoxidation equilibrium in liquid Fe−16 pct Cr alloy, Metall. Mater. Trans. B, 36(2005), No. 3, p. 414. doi: 10.1007/s11663-005-0071-7
    [14]
    C.W. Seo, S.H. Kim, S.K. Jo, M.O. Suk, and S.M. Byun, Modification and minimization of spinel (Al2O3·xMgO) inclusions formed in Ti-added steel melts, Metall. Mater. Trans. B, 41(2010), No. 4, p. 790. doi: 10.1007/s11663-010-9377-1
    [15]
    N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius, Calcium modification of spinel inclusions in aluminum-killed steel: reaction steps, Metall. Mater. Trans. B, 43(2012), No. 4, p. 830. doi: 10.1007/s11663-012-9660-4
    [16]
    S.F. Yang, J.S. Li, Z.F. Wang, J. Li, and L. Lin, Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 18. doi: 10.1007/s12613-011-0394-0
    [17]
    T.S. Zhang, C.J. Liu, and M.F. Jiang, Effect of Mg on behavior and particle size of inclusions in Al-Ti deoxidized molten steels, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2253. doi: 10.1007/s11663-016-0706-x
    [18]
    M.A. Van Ende, M.X. Guo, R. Dekkers, M. Burty, J. Van Dyck, P.T. Jones, B. Blanpain, and P. Wollants, Formation and evolution of Al–Ti oxide inclusions during secondary steel refining, ISIJ Int., 49(2009), No. 8, p. 1133. doi: 10.2355/isijinternational.49.1133
    [19]
    C. Wang, N.T. Nuhfer, and S. Sridhar, Transient behavior of inclusion chemistry, shape, and structure in Fe−Al−Ti−O melts: effect of gradual increase in Ti, Metall. Mater. Trans. B, 41(2010), No. 5, p. 1084. doi: 10.1007/s11663-010-9397-x
    [20]
    X. Yin, Y. Sun, Y. Yang, X. Deng, M. Barati, and A. McLean, Effect of alloy addition on inclusion evolution in stainless steels, Ironmaking Steelmaking, 44(2017), No. 2, p. 152. doi: 10.1080/03019233.2016.1185285
    [21]
    Y. Ren, L.F. Zhang, W. Yang, and H.J. Duan, Formation and thermodynamics of Mg−Al−Ti−O complex inclusions in Mg−Al−Ti-deoxidized steel, Metall. Mater. Trans. B, 45(2014), No. 6, p. 2057. doi: 10.1007/s11663-014-0121-0
    [22]
    T. Zhang, C. Liu, J. Qiu, X. Li, and M. Jiang, Effect of Ti content on the characteristics of inclusions in Al–Ti–Ca complex deoxidized steel, ISIJ Int., 57(2017), No. 2, p. 314. doi: 10.2355/isijinternational.ISIJINT-2016-417
    [23]
    W.Y. Cha, T. Miki, Y. Sasaki, and M. Hino, Temperature dependence of Ti deoxidation equilibria of liquid iron in coexistence with ‘Ti3O5’ and Ti2O3, ISIJ Int., 48(2008), No. 6, p. 729. doi: 10.2355/isijinternational.48.729
    [24]
    W.Y. Cha, T. Nagasaka, T. Miki, Y. Sasaki, and M. Hino, Equilibrium between titanium and oxygen in liquid Fe−Ti alloy coexisted with titanium oxides at 1873 K, ISIJ Int., 46(2006), No. 7, p. 996. doi: 10.2355/isijinternational.46.996
    [25]
    I.H. Jung, G. Eriksson, P. Wu, and A. Pelton, Thermodynamic modeling of the Al2O3−Ti2O3−TiO2 system and its applications to the Fe−Al−Ti−O inclusion diagram, ISIJ Int., 49(2009), No. 9, p. 1290. doi: 10.2355/isijinternational.49.1290
    [26]
    H. Matsuura, C. Wang, G. Wen, and S. Sridhar, The transient stages of inclusion evolution during Al and/or Ti additions to molten iron, ISIJ Int., 47(2007), No. 9, p. 1265. doi: 10.2355/isijinternational.47.1265
    [27]
    H.P. Wang, L.F. Sun, B. Peng, and M.F. Jiang, Inclusions for ultra-pure ferritic stainless steels containing 21% chromium, J. Iron Steel Res. Int., 20(2013), No. 10, p. 70. doi: 10.1016/S1006-706X(13)60179-X
    [28]
    M. Hino and K. Ito, Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010, p. 72.
    [29]
    J. Siwka, Equilibrium constants and nitrogen activity in liquid metals and iron alloys, ISIJ Int., 48(2008), No. 4, p. 385. doi: 10.2355/isijinternational.48.385
    [30]
    D. Janke and A. Fischer, Deoxidation equilibria of titanium, aluminum, and zirconium in iron melts at 1600 degree C, Arch. Eisenhuttenwes, 47(1976), No. 4, p. 195.
    [31]
    W. Zheng, Z.H. Wu, G.Q. Li, Z. Zhang, and C.Y. Zhu, Effect of Al content on the characteristics of inclusions in Al–Ti complex deoxidized steel with calcium treatment, ISIJ Int., 54(2014), No. 8, p. 1755. doi: 10.2355/isijinternational.54.1755
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(3527) PDF Downloads(143) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return