Ping Song, Cong Wang, Jie Ren, Ying Sun, Yong Zhang, Angélique Bousquet, Thierry Sauvage, and Eric Tomasella, Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1371-1378.
Cite this article as:
Ping Song, Cong Wang, Jie Ren, Ying Sun, Yong Zhang, Angélique Bousquet, Thierry Sauvage, and Eric Tomasella, Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1371-1378.
Research Article

Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films

+ Author Affiliations
  • Corresponding author:

    Cong Wang    E-mail:

  • Received: 25 October 2019Revised: 1 January 2020Accepted: 7 January 2020Available online: 16 March 2020
  • This paper demonstrates an intrinsic modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films. The (NiCuCrFeSi)N ((NCCFS)N) films were deposited by a magnetron sputtering system. Rutherford backscattering spectroscopy analysis confirms the uniform composition and good homogeneity of these high-entropy films. The real and imaginary parts of the permittivity for the (NCCFS)N material are calculated on the basis of the reflectance spectral fitting results. A redshift cutoff wavelength of the reflectance spectrum with increasing nitrogen gas flow rate exists because of the different levels of dispersion when changing nitrogen content. To realize significant solar absorption, the film surface was reconstituted to match its impedance with air by designing a pyramid nanostructure metasurface. Compared with the absorptance of the as-deposited films, the designed metasurface obtains a significant improvement in solar absorption with the absorptance increasing from 0.74 to 0.99. The metasurfaces also show low mid-infrared emissions with thermal emittance that can be as low as 0.06. These results demonstrate a new idea in the design of solar selective absorbing surface with controllable absorptance and low infrared emission for high-efficiency photo-thermal conversion.
  • loading
  • [1]
    B.J. Brinkworth, Solar energy, Nature, 249(1974), p. 726. doi: 10.1038/249726a0
    N.S. Lewis, Research opportunities to advance solar energy utilization, Science, 351(2016), No. 6271, p. aad1920. doi: 10.1126/science.aad1920
    Q.C. Zhang and D.R. Mills, New cermet film structures with much improved selectivity for solar thermal applications, Appl. Phys. Lett., 60(1992), No. 5, p. 545. doi: 10.1063/1.106602
    N.P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks, Opt. Express, 17(2009), No. 25, p. 22800. doi: 10.1364/OE.17.022800
    R. Gordon and A.G. Brolo, Increased cut-off wavelength for a subwavelength hole in a real metal, Opt. Express, 13(2005), No. 6, p. 1933. doi: 10.1364/OPEX.13.001933
    Y.X. Yeng, M. Ghebrebrhan, P. Bermel, W.R. Chan, J.D. Joannopoulos, M. Soljacic, and I. Celanovic, Enabling high-temperature nanophotonics for energy applications, Proceedings of the National Academy of Sciences, 109(2012), No. 7, p. 2280. doi: 10.1073/pnas.1120149109
    P.N. Dyachenko, J.J. do Rosário, E.W. Leib, A.Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G.A. Schneider, and M. Eich, Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres, Opt. Express, 23(2015), No. 19, p. A1236. doi: 10.1364/OE.23.0A1236
    Y.P. Ning, W.W. Wang, L. Wang, Y. Sun, P. Song, H.L. Man, Y.L. Zhang, B.B. Dai, J.Y. Zhang, C. Wang, Y. Zhang, S.X. Zhao, E. Tomasella, A. Bousquet, and J. Cellier, Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO2 solar selective absorbing coating, Sol. Energy Mater. Sol. Cells, 167(2017), p. 178. doi: 10.1016/j.solmat.2017.04.017
    Y.P. Ning, W.W. Wang, Y. Sun, Y.X. Wu, Y.F. Liu, H.L. Man, C. Wang, Y. Zhang, S.X. Zhao, E. Tomasella, and A. Bousquet, Investigation on low thermal emittance of Al films deposited by magnetron sputtering, Infrared Phys. Technol., 75(2016), p. 133. doi: 10.1016/j.infrared.2016.01.007
    Y.P. Ning, W.W. Wang, Y. Sun, Y.X. Wu, H.L. Man, C. Wang, S.X. Zhao, E. Tomasella, A. Bousquet, and Y. Zhang, Tuning of reflectance transition position of Al−AlN cermet solar selective absorbing coating by simulating, Infrared Phys. Technol., 80(2017), p. 65. doi: 10.1016/j.infrared.2016.11.012
    E. Céspedes, M. Wirz, J.A. Sánchez-García, L. Alvarez-Fraga, R. Escobar-Galindo, and C. Prieto, Novel Mo–Si3N4 based selective coating for high temperature concentrating solar power applications, Sol. Energy Mater. Sol. Cells, 122(2014), p. 217. doi: 10.1016/j.solmat.2013.12.005
    P.J. Ma, Q.F Geng, X.H. Gao, S.R. Yang, and G. Liu, Aqueous chemical solution deposition of spinel Cu1.5Mn1.5O4 single layer films for solar selective absorber, RSC Adv., 6(2016), No. 60, p. 54820. doi: 10.1039/C6RA08777A
    P. Song, Y.X. Wu, L. Wang, Y. Sun, Y.P. Ning, Y.L. Zhang, B.B. Dai, E. Tomasella, A. Bousquet, and C. Wang, The investigation of thermal stability of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coating, Sol. Energy Mater. Sol. Cells, 171(2017), p. 253. doi: 10.1016/j.solmat.2017.06.056
    E. Rephaeli and S.H. Fan, Tungsten black absorber for solar light with wide angular operation range, Appl. Phys. Lett., 92(2008), No. 21, art. No. 211107. doi: 10.1063/1.2936997
    V. Rinnerbauer, Y. Shen, J.D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, Superlattice photonic crystal as broadband solar absorber for high temperature operation, Opt. Express, 22(2014), No. S7, p. A1895. doi: 10.1364/OE.22.0A1895
    C. Argyropoulos, K.Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces, Phys. Rev. B, 87(2013), No. 20, p. 5112.
    C.L. Wan, Y.L. Ho, S. Nunez-Sanchez, L.F. Chen, M. Lopez-Garcia, J. Pugh, B.F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M.J. Cryan, A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications, Nano Energy, 26(2016), p. 392. doi: 10.1016/j.nanoen.2016.05.013
    G.Q. Liu, Y.Y. Nie, G.L. Fu, X.S. Liu, Y. Liu, L. Tang, and Z.Q. Liu, Semiconductor meta-surface based perfect light absorber, Nanotechnology, 28(2017), No. 16, p. 165202. doi: 10.1088/1361-6528/aa6613
    M.H. Heidari and S.H. Sedighy, Broadband wide-angle polarization-insensitive metasurface solar absorber, J. Opt. Soc. Am. A, 35(2018), No. 4, p. 522. doi: 10.1364/JOSAA.35.000522
    Z.Q. Liu, G.Q. Liu, Z.P. Huang, X.S. Liu, and G.L. Fu, Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface, Sol. Energy Mater. Sol. Cells, 179(2018), p. 346. doi: 10.1016/j.solmat.2017.12.033
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10(2008), No. 21, p. 534.
    Y. Zou, H. Ma, and R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales, Nat. Commun., 6(2015), No. 7748, p. 1.
    Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, 534(2016), No. 7606, p. 227. doi: 10.1038/nature17981
    C.-Y. Cheng and J.-W. Yeh, High thermal stability of the amorphous structure of GexNbTaTiZr (x = 0.5, 1) high-entropy alloys, Mater. Lett., 181(2016), p. 223. doi: 10.1016/j.matlet.2016.06.040
    M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, and J.Y. Gan, Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization, Appl. Phys. Lett., 92(2008), No. 5, p. 052109. doi: 10.1063/1.2841810
    C.Y. Cheng and J.W. Yeh, High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties, Mater. Lett., 185(2016), p. 456. doi: 10.1016/j.matlet.2016.09.050
    A.D. Pogrebnjak, I.V. Yakushchenko, O.V. Bondar, V.M. Beresnev, K. Oyoshi, O.M. Ivasishin, H. Amekura, Y. Takeda, M. Opielak, and C. Kozak, Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings, J. Alloys Compd., 679(2016), p. 155. doi: 10.1016/j.jallcom.2016.04.064
    X.H. Yan, J.S. Li, W.R. Zhang, and Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys., 210(2018), p. 12. doi: 10.1016/j.matchemphys.2017.07.078
    M. Mayer, SIMNRA User’s Guide, Max-Planck-Institut Für Plasmaphysik, Garching, 2017 p. 350.
    J.F. Ziegler, J.P. Biersack, and M.D. Ziegler, SRIM – The Stopping and Range of Ions in Matter, SRIM Co., Chester, Maryland, 2008, p. 398.
    P. Drude, The Theory of Optics, Dover Publications, New York, 1925.
    C.C. Kim, J.W. Garland, H. Abad, and P.M. Raccah, Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation, Phys. Rev. B, 45(1992), No. 20, p. 11749. doi: 10.1103/PhysRevB.45.11749
    Y.X. Wu, C. Wang, Y. Sun, Y.P. Ning, Y.F. Liu, Y.F. Xue, W.W. Wang, S.X. Zhao, E. Tomasella, and A. Bousquet, Tomasella, and A. Bousquet, Study on the thermal stability of Al/NbTiSiN/NbTiSiON/SiO2 solar selective absorbing coating, Sol. Energy, 119(2015), p. 18. doi: 10.1016/j.solener.2015.06.021
    N.P. Barradas, C. Jeynes, and R.P. Webb, Simulated annealing analysis of Rutherford backscattering data, Appl. Phys. Lett., 71(1997), No. 2, p. 291. doi: 10.1063/1.119524
    M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, [in] AIP Conference Proceedings, AIP, Denton, Texas, 1999, p. 541.
    M. Fox, Optical Properties of Solids, Oxford University Press, New York, 2001.
    T.K. Chen, M.S. Wong, T.T. Shun, and J.W. Yeh, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 200(2005), No. 5-6, p. 1361. doi: 10.1016/j.surfcoat.2005.08.081
    D.C. Tsai, Z.C. Chang, B.H. Kuo, S.Y. Chang, and F.S. Shieu, Effects of silicon content on the structure and properties of (AlCrMoTaTi)N coatings by reactive magnetron sputtering, J. Alloys Compd., 616(2014), p. 646. doi: 10.1016/j.jallcom.2014.07.095
    D. Alexei, V. Ilya, P. Boris, and L. Yurii, Minimizing light reflection from dielectric textured surfaces, J. Opt. Soc. Am. A, 28(2011), No. 5, p. 770. doi: 10.1364/JOSAA.28.000770
    A. Dan, H.C. Barshilia, K. Chattopadhyay, and B. Basu, Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review, Renewable Sustainable Energy Rev., 79(2017), p. 1050. doi: 10.1016/j.rser.2017.05.062
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Share Article

    Article Metrics

    Article views (1471) PDF downloads(23) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint