Wan-zhong Yinand Yuan Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 571-583. https://doi.org/10.1007/s12613-020-1999-y
Cite this article as:
Wan-zhong Yinand Yuan Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 571-583. https://doi.org/10.1007/s12613-020-1999-y
Invited Review

Interactive effect of minerals on complex ore flotation: A brief review

+ Author Affiliations
  • Corresponding author:

    Yuan Tang    E-mail: crushty@163.com

  • Received: 13 October 2019Revised: 3 February 2020Accepted: 5 February 2020Available online: 11 February 2020
  • Froth flotation is the most effective industrial method used to separate fine-grained minerals. The main problem of complex ore flotation is the negative effect of interactions among minerals in slurry, leading to variation in surface properties during separation. In this review, studies on the interactive effect among minerals on the flotation of iron ores, magnesite ores, and scheelite ores are summarized, and the main problems and mechanisms that diminish the separation efficiency of minerals are revealed in detail. Recent research progress on the flotation of these ores has confirmed that mineral aggregation, coating, and dissolution, as well as other factors caused by interacting behavior, explain the depressing effects of fine particles on mineral separation. Solvable methods for these effects are further discussed. Novel flotation processes and more selective reagents are critical for further investigations on various approaches to improve the beneficiation efficiency of these ores. This review aims to provide a good reference for conducting studies related to complex ore flotation.

  • loading
  • [1]
    S. Ndlovu, Biohydrometallurgy for sustainable development in the African minerals industry, Hydrometallurgy, 91(2008), No. 1-4, p. 20. doi: 10.1016/j.hydromet.2007.11.007
    R.H. Chen, Y. Lin, and M.L. Tseng, Multicriteria analysis of sustainable development indicators in the construction minerals industry in China, Resour. Policy, 46(2015), No. Part 1, p. 123. doi: https://doi.org/10.1016/j.resourpol.2014.10.012
    Q.Q. Lin, G.H. Gu, H. Wang, Y.C. Liu, J.G. Fu, and C.Q. Wang, Flotation mechanisms of molybdenite fines by neutral oils, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 1. doi: 10.1007/s12613-018-1540-8
    C. T. Harris, The Selective Sulphation and Physical Upgrading of Nickel From a Nickeliferous Lateritic Ore [Dissertation], Queen’s University, Ontario, 2012, p. 3.
    F. Hernáinz, M. Calero, and G. Blázquez, Flotation of low-grade phosphate ore, Adv. Powder Technol., 15(2004), No. 4, p. 421. doi: 10.1163/1568552041270491
    T.J. Veasey and B.A. Wills, Review of methods of improving mineral liberation, Miner. Eng., 4(1991), p. 747. doi: 10.1016/0892-6875(91)90062-Z
    D. Sbárbaro and R. del Villar, Advanced Control and Supervision of Mineral Processing Plants, Springer, London, 2010, p. 4.
    D.S. He, Y. Chen, P. Xiang, Z.J. Yu, and J.H. Potgieter, Study on the pre-treatment of oxidized zinc ore prior to flotation, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 117. doi: https://doi.org/10.1007/s12613-018-1554-2
    K. Quast, Literature review on the use of natural products in the flotation of iron oxide ores, Miner. Eng., 108(2017), p. 12. doi: 10.1016/j.mineng.2017.01.008
    L. Wang, Y. Peng, K. Runge, and D. Bradshaw, A review of entrainment: Mechanisms, contributing factors and modelling in flotation, Miner. Eng., 70(2015), p. 77. doi: 10.1016/j.mineng.2014.09.003
    A.E.C. Botero, M.L. Torem, and L.M. Souza de Mesquita, Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite, Miner. Eng., 20(2007), No. 10, p. 1026. doi: 10.1016/j.mineng.2007.03.017
    S. Grano, The critical importance of the grinding environment on fine particle recovery in flotation, Miner. Eng., 22(2009), No. 4, p. 386. doi: 10.1016/j.mineng.2008.10.008
    E. Forbes, Shear selective and temperature responsive flocculation: A comparison of fine particle flotation techniques, Int. J. Miner. Process., 99(2011), No. 1-4, p. 1. doi: 10.1016/j.minpro.2011.02.001
    W.S. Ng, R. Sonsie, E. Forbes, and G.V. Franks, Flocculation/flotation of hematite fines with anionic temperature-responsive polymer acting as a selective flocculant and collector, Miner. Eng., 77(2015), p. 64. doi: 10.1016/j.mineng.2015.02.013
    S.X. Song and S.C. Lu, Hydrophobic flocculation of fine hematite, siderite, and rhodochrosite particles in aqueous solution, J. Colloid Interface Sci., 166(1994), No. 1, p. 35. doi: 10.1006/jcis.1994.1268
    R. Sivamohan, The problem of recovering very fine particles in mineral processing—A review, Int. J. Miner. Process., 28(1990), p. 247. doi: 10.1016/0301-7516(90)90046-2
    S.C. Lu, Y.Q. Ding, and J.Y. Guo, Kinetics of fine particle aggregation in turbulence, Adv. Colloid Interface Sci., 78(1998), No. 3, p. 197. doi: 10.1016/S0001-8686(98)00062-1
    W.Z. Yin, Y. Tang, J. Yao, X.M. Luo, and J.Z. Wang, Interactive effects in mineral flotation process, Conserv. Util. Miner. Resour., 3(2018), p. 55.
    X.M. Luo, W.Z. Yin, Y.F. Wang, C.Y. Sun, Y.Q. Ma, and J. Liu, Effect and mechanism of siderite on reverse anionic flotation of quartz from hematite, J. Cent. South Univ., 23(2016), No. 1, p. 52. doi: 10.1007/s11771-016-3048-6
    G. Ateşok, F. Boylu, and M.S. Çelĭk, Carrier flotation for desulfurization and deashing of difficult-to-float coals, Miner. Eng., 14(2001), No. 6, p. 661. doi: 10.1016/S0892-6875(01)00058-9
    W.B. Hu, D.Z. Wang, and H.A. Jin, Flotation of wolframite slime-practice and technological innovation, [in] Proceedings of XIV International Mineral Processing Congress, Toronto, 1982, p. 5.
    W.B. Hu, D.Z. Wang, and G.Z. Qiu, Autogenous carrier flotation, [in] K.S. Eric Forssberg, ed., Proceedings of XVI International Mineral Processing Congress, Stockholm, 1988, p. 445.
    N. Luo, D.Z. Wei, Y.B. Shen, C. Han, and C.E. Zhang, Elimination of the adverse effect of calcium ion on the flotation separation of magnesite from dolomite, Minerals, 7(2017), No. 8, p. 150. doi: 10.3390/min7080150
    X.M. Luo, M.Z. Ma, C.Y. Sun, W.Z. Yin, Y. Zhang, and S.X. Song, Interaction forms among minerals in iron ore flotation system, J. China Univ. Min. Technol., 47(2018), No. 3, p. 645.
    R. Sivamohan and E. Forssberg, Recovery of heavy minerals from slimes, Int. J. Miner. Process., 15(1985), No. 4, p. 297. doi: 10.1016/0301-7516(85)90047-X
    T. Miettinen, J. Ralston, and D. Fornasiero, The limits of fine particle flotation, Miner. Eng., 23(2010), No. 5, p. 420. doi: 10.1016/j.mineng.2009.12.006
    E.N. Peleka, G.P. Gallios, and K.A. Matis, A perspective on flotation: A review, J. Chem. Technol. Biotechnol., 93(2018), No. 3, p. 615. doi: 10.1002/jctb.5486
    T.V. Subrahmanyam and K.S. Eric Forssberg, Fine particles processing: Shear-flocculation and carrier flotation—A review, Int. J. Miner. Process., 30(1990), No. 3-4, p. 265. doi: 10.1016/0301-7516(90)90019-U
    W. Chen, Q.M. Feng, G.F. Zhang, L.F. Li, and S.Z. Jin, Effect of energy input on flocculation process and flotation performance of fine scheelite using sodium oleate, Miner. Eng., 112(2017), p. 27. doi: 10.1016/j.mineng.2017.07.002
    N.N. Rulyov, Combined microflotation of fine minerals: Theory and experiment, Trans. Inst. Min. Metall.,Sect. C, 125(2016), No. 2, p. 81.
    W.J. Trahar and L.J. Warren, The flotability of very fine particles—A review, Int. J. Miner. Process., 3(1976), No. 2, p. 103. doi: 10.1016/0301-7516(76)90029-6
    G. Bournival, S. Ata, and E.J. Wanless, The roles of particles in multiphase processes: Particles on bubble surfaces, Adv. Colloid Interface Sci., 225(2015), p. 114. doi: 10.1016/j.cis.2015.08.008
    L. Li, J.T. Liu, L.J. Wang, and H.S. Yu, Numerical simulation of a self-absorbing microbubble generator for a cyclonic-static microbubble flotation column, Min. Sci. Technol. (China), 20(2010), No. 1, p. 88. doi: 10.1016/S1674-5264(09)60166-6
    G.Z. Qiu, Y.H. Hu, and D.Z. Wang, Interparticle Interaction and Fine Particle Flotation, Central South University Press, Changsha, 1993.
    L.O. Filippov, V.V. Severov, and I.V. Filippova, An overview of the beneficiation of iron ores via reverse cationic flotation, Int. J. Miner. Process., 127(2014), p. 62. doi: 10.1016/j.minpro.2014.01.002
    H.J. Haselhuhn and S.K. Kawatra, Effects of water chemistry on hematite selective flocculation and dispersion, Miner. Process. Extr. Metall. Rev., 36(2015), No. 5, p. 305. doi: 10.1080/08827508.2014.978318
    T.C. Eisele and S.K. Kawatra, A review of binders in iron ore palletization, Miner. Process. Extr. Metall. Rev., 24(2003), No. 1, p. 1. doi: 10.1080/08827500306896
    Q. Zhang, X.Y. Zhao, H.Y. Lu, T.J. Ni, and Y. Li, Waste energy recovery and energy efficiency improvement in China’s iron and steel industry, Appl. Energy, 191(2017), p. 502. doi: 10.1016/j.apenergy.2017.01.072
    G.R. Li, The chinese iron ore deposits and ore production, [in] V. Shatokha, ed., Iron Ores and Iron Oxide Materials, IntechOpen Press, London, 2018, p. 3.
    F. Nakhaei and M. Irannajad, Reagents types in flotation of iron oxide minerals: A review, Miner. Process. Extr. Metall. Rev., 39(2018), No. 2, p. 89. doi: 10.1080/08827508.2017.1391245
    U. S. Geological Survey, Iron ore, [in] Mineral Commodity Summaries 2019, U. S. Geological Survey, Virginia, 2019 [2020-4-6]. https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/mcs-2019-feore.pdf
    M. Ma, Froth flotation of iron ores, Int. J. Min. Eng. Miner. Process., 1(2012), No. 2, p. 56. doi: 10.5923/j.mining.20120102.06
    L. Rocha, R.Z.L. Cançado, and A.E.C. Peres, Iron ore slimes flotation, Miner. Eng., 23(2010), No. 11-13, p. 842. doi: 10.1016/j.mineng.2010.03.009
    A.C. Araujo, P.R.M. Viana, and A.E.C. Peres, Reagents in iron ores flotation, Miner. Eng., 18(2005), No. 2, p. 219. doi: 10.1016/j.mineng.2004.08.023
    B.Q. Sun, Progress in China’s beneficiation technology for complex refractory iron ore, Met. Mine, 3(2006), p. 11.
    J. Svoboda, Magnetic Methods for the Treatment of Minerals, Elsevier, South Africa, 1987, p. 692.
    D. David, M. Larson, and M. Li, Optimising Western Australia magnetite circuit design, [in] METPLANT 2011- Metallurgical Plant Design and Operating Strategies, Perth, 2011, p. 552.
    Pradip, S.A. Ravishankar, T.A.P. Sankar, and N.K. Khosla, Beneficiation studies on alumina-rich Indian iron ore slimes using selective dispersants, flocculants and flotation collectors, [in] Proceedings XVIII International Mineral Processing Congress, Sydney, 1993, p. 1289.
    N.P. Lima, G.E.S. Valadão, and A.E.C. Peres, Effect of amine and starch dosages on the reverse cationic flotation of an iron ore, Miner. Eng., 45(2013), p. 180. doi: 10.1016/j.mineng.2013.03.001
    P.R.G. Brandão, Selectivity in reverse iron ore flotation: reagents adsorption, [in] Proceedings XXI Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, Natal, 2005. p. 22.
    J.A. Meech, Feasibility of iron recovery from Mount Wright tailing material, Can. Min. Metall. Bull., 74(1981), No. 826, p. 115.
    X.M. Luo, Y.F. Wang, S.M. Wen, M.Z. Ma, C.Y. Sun, W.Z. Yin, and Y.Q. Ma, Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores, Int. J. Miner. Process., 152(2016), p. 1. doi: 10.1016/j.minpro.2016.04.008
    X.M. Luo, Research on Interactive Effect Among Minerals in Flotation System of Carbonate-Containing Iron Ore [Dissertation], Northeastern University, Shenyang, 2014, p. 122.
    Y.X. Yu, G. Cheng, L.Q. Ma, G. Huang, L. Wu, and H.X. Xu, Effect of agitation on the interaction of coal and kaolinite in flotation, Powder Technol., 313(2017), p. 122. doi: 10.1016/j.powtec.2017.03.002
    D. Li, W.Z. Yin, Q. Liu, S.H. Cao, Q.Y. Sun, C. Zhao, and J. Yao, Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation, Miner. Eng., 114(2017), p. 74. doi: 10.1016/j.mineng.2017.09.012
    D. Greaves, J. Boxall, J. Mulligan, A. Montesi, J. Creek, E.D. Sloan, and C.A. Koh, Measuring the particle size of a known distribution using the focused beam reflectance measurement technique, Chem. Eng. Sci., 63(2008), No. 22, p. 5410. doi: 10.1016/j.ces.2008.07.023
    M. Zhang, M.B. Liu, W.Z. Yin, Y.X. Han, and Y.J. Li, Investigation on stepped-flotation process for Dong’anshan carbonate-containing refractory iron ore, Met. Mine, 9(2007), p. 62.
    W.Z. Yin, Y.Q. Ma, M.B. Liu, M. Zhang, and L.X. Li, Industrial tests on step-flotation of iron ore containing high ferric carbonate in Dong’anshan, Met. Mine, 8(2011), p. 64.
    C. Bhondayi and M.H. Moys, Effects of gas distribution profile on flotation cell performance: An experimental investigation, Int. J. Miner. Process., 135(2015), p. 20. doi: 10.1016/j.minpro.2015.01.004
    E.H. Girgin, S. Do, C.O. Gomez, and J.A. Finch, Bubble size as a function of impeller speed in a self-aeration laboratory flotation cell, Miner. Eng., 19(2006), No. 2, p. 201. doi: 10.1016/j.mineng.2005.09.002
    X.M. Luo, W.Z. Yin, J. Yao, C.Y. Sun, Y. Cao, Y.Q. Ma, and Y. Hou, Flotation separation of magnetic separation concentrate of refractory hematite containing carbonate with enhanced dispersion, Chin. J. Nonferrous Met., 23(2013), No. 1, p. 238.
    J.G. Li, G.H. Zhang, T. Shang, and J.F. Zhu, Synthesis, characterization and application of a dispersant based on rosin for coal-water slurry, Int. J. Min. Sci. Technol., 24(2014), No. 5, p. 695. doi: 10.1016/j.ijmst.2014.03.025
    H.L. Han, Research on the Synergy and its Mechanisms of Step-by-Step Flotation and Dispersing Flotation for Carbonate-Containing [Dissertation], Northeastern University, Shenyang, 2016, p. 48.
    M.M.H. Al Omari, I.S. Rashid, N.A. Qinna, A.M. Jaber, and A.A. Badwan, Calcium Carbonate, [in] Profiles of Drug Substances, Excipients and Related Methodology, Academic Press, Salt Lake City, 2016, p. 31.
    W.A. Deer, R.A. Howie, and J. Zussman, An Introduction to the Rock-Forming Minerals, 3rd eds, The Mineralogical Society of Great Britain and Ireland, London, 2013.
    H. Zhang, W.G. Liu, C. Han, and H.Q. Hao, Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate, J. Mol. Liq., 249(2018), p. 1060. doi: 10.1016/j.molliq.2017.11.148
    L. Momenzadeh, B. Moghtaderi, X.F. Liu, S.W. Sloan, I.V. Belova, and G.E. Murch, The thermal conductivity of magnesite, dolomite and calcite as determined by molecular dynamics simulation, [in] Diffusion Foundation, L.J. Zhang ed., Trans Tech Publications, 2018, p. 18.
    F. Zhou, L.X. Wang, Z.H. Xu, Q.X. Liu, and R. Chi, Reactive oily bubble technology for flotation of apatite, dolomite and quartz, Int. J. Miner. Process., 134(2015), p. 74. doi: 10.1016/j.minpro.2014.11.009
    Y. Tang, W.Z. Yin, and S. Kelebek, Selective flotation of magnesite from calcite using potassium cetyl phosphate as a collector in the presence of sodium silicate, Miner. Eng., 146(2020), art. No. 106154.
    E. Dimopoulos and G.N. Anastassakis, Recovery of magnesite from fine waste material rejected before hand-sorting, [in] Proceedings of XV Balkan Mineral Processing Congress, Sozopol, 2013, p. 213.
    G.N. Anastassakis, A study on the separation of magnesite fines by magnetic carrier methods, Colloids Surf. A, 149(1999), No. 1-3, p. 585. doi: 10.1016/S0927-7757(98)00562-7
    G.F. Li, Development of magnesite concentration and success in its flotation technology, China Min. Mag., 4(1995), No. 2, p. 64.
    P. Raschman, Leaching of calcined magnesite using ammonium chloride at constant pH, Hydrometallurgy, 56(2000), No. 1, p. 109. doi: 10.1016/S0304-386X(00)00078-5
    V.E. Potapenko, D.I. Suvorova, and V.V. Tyuryukhanova, Beneficiation of magnesite ores by froth separation, Refractories, 22(1981), No. 3, p. 146. doi: https://doi.org/10.1007/BF01386573
    Y. Tang, W.Z. Yin, and S. Kelebek, Magnesite-dolomite separation using potassium cetyl phosphate as a novel flotation collector and related surface chemistry, Appl. Surf. Sci., 508(2020), art. No. 145191.
    B.M. Moudgil, Separation of Magnesite from Ores Which Also Contain Calcite or Dolomite, U.S. Patent, Appl. 4207175, 1980.
    U.S. Geological Survey, Mineral Commodity Summaries (2010–2018), U.S. Geological Survey, Virginia, 2010–2018 [2020-04-08]. https://www.usgs.gov/centers/nmic/mineral-commodity-summaries
    J. Škvarla and S. Kmet’, Non-equilibrium electro kinetic properties of magnesite and dolomite determined by the laser-Doppler electrophoretic light scattering (ELS) technique. A solids concentration effect, Colloids Surf. A, 111(1996), No. 1-2, p. 153. doi: 10.1016/0927-7757(96)03448-6
    I. Bentli, N. Erdogan, N. Elmas, and M. Kaya, Magnesite concentration technology and caustic-calcined product from Turkish magnesite middlings by calcination and magnetic separation, Sep. Sci. Technol., 52(2017), No. 6, p. 1129. doi: 10.1080/01496395.2017.1281307
    J.F. Mao, Z.J. Zhang, and H.L. Zhao, Research into the effect of combined modifiers in magnesite flotation, [in] Proceedings XVIII International Mineral Processing Congress, Sydney, 1993, p. 1118.
    Y.Q. Liu and Q. Liu, Flotation separation of carbonate from sulfide minerals, Ⅰ: Flotation of single minerals and mineral mixtures, Miner. Eng., 17(2004), No. 7-8, p. 855. doi: 10.1016/j.mineng.2004.03.006
    D.G. Wonyen, V. Kromah, B. Gibson, S. Nah, and S.C. Chelgani, A review of flotation separation of Mg carbonates (dolomite and magnesite), Minerals, 8(2018), No. 8, p. 354. doi: 10.3390/min8080354
    H. Soto and I. Iwasaki, Selective flotation of phosphates from dolomite using cationic collectors. I. Effect of collector and nonpolar hydrocarbons, Int. J. Miner. Process., 16(1986), No. 1-2, p. 3. doi: 10.1016/0301-7516(86)90071-2
    E. Forbes, K.J. Davey, and L. Smith, Decoupling rehology and slime coatings effect on the natural flotability of chalcopyrite in a clay-rich flotation pulp, Miner. Eng., 56(2014), p. 136. doi: 10.1016/j.mineng.2013.11.012
    J. Yao, J.W. Xue, D. Li, Y.F. Fu, E.P. Gong, and W.Z. Yin, Effects of fine-coarse particles interaction on flotation separation and interaction energy calculation, Part. Sci. Technol., 36(2018), No. 1, p. 11. doi: 10.1080/02726351.2016.1205687
    J. Yao, Research on the Reciprocal Influences Among Magnesium-containing Ores in Flotation [Dissertation], Northeastern University, Shenyang, 2014.
    T. Missana and A. Adell, On the applicability of DLVO theory to the prediction of clay colloids stability, J. Colloid Interface Sci., 230(2000), No. 1, p. 150. doi: 10.1006/jcis.2000.7003
    R.H. Yoon and L.Q. Mao, Application of extended DLVO theory, IV: Derivation of flotation rate equation from first principles, J. Colloid Interface Sci., 181(1996), No. 2, p. 613. doi: 10.1006/jcis.1996.0419
    G.P. Gallios and K.A. Matis, Flotation of salt-type minerals, [in] P. Mavros and K.A. Matis, eds., Innovations in Flotation Technology. NATO ASI Series (Series E: Applied Sciences), Springer, Dordrecht, 1992.
    K.A. Matis and G.P. Gallios, Anionic flotation of magnesium carbonates by modifiers, Int. J. Miner. Process., 25(1989), No. 3-4, p. 261. doi: 10.1016/0301-7516(89)90021-5
    H.D.G. Turrer, A.C. Araujo, R.M. Papini, and A.E.C. Peres, Iron ore flotation in the presence of polyacrylamides, Trans. Inst. Min. Metall. Sect. C, 116(2007), No. 2, p. 81.
    X.S. Yang, Beneficiation studies of tungsten ores—A review, Miner. Eng., 125(2018), p. 111. doi: 10.1016/j.mineng.2018.06.001
    U.S. Geological Survey, Tungsten, [in] Mineral Commodity Summaries 2019, U.S. Geological Survey, Virginia, 2019, p. 179 [2020-4-6]. https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/mcs2019_all.pdf
    P. Pitfield, T. Brown, G. Gunn, and D. Rayner, Mineral Profiles-Tungsten, British Geological Survey, Nottingham, 2011 [2020-04-08], http://www.bgs.ac.uk/downloads/start.cfm?id=1981.
    Pradip, B. Rai, T.K. Rao, S. Krishnamurthy, R. Vetrivel, J. Mielczarski, and J.M. Cases, Molecular modeling of interactions of alkyl hydroxamates with calcium minerals, J. Colloid Interface Sci., 256(2002), No. 1, p. 106. doi: 10.1006/jcis.2001.7994
    W.Z. Yin and J.Z. Wang, Effects of particle size and particle interactions on scheelite flotation, Trans. Nonferrous Met. Soc. China, 24(2014), No. 11, p. 3682. doi: 10.1016/S1003-6326(14)63515-9
    Y.S. Gao, Z.Y. Gao, W. Sun, and Y.H. Hu, Selective flotation of scheelite from calcite: a novel reagent scheme, Int. J. Miner. Process., 154(2016), p. 10. doi: 10.1016/j.minpro.2016.06.010
    S.I. Angadi, T. Sreenivas, H.S. Jeon, S.H. Baek, and B.K. Mishra, A review of cassiterite beneficiation fundamentals and plant practices, Miner. Eng., 70(2015), p. 178. doi: 10.1016/j.mineng.2014.09.009
    L.Q. Deng, G. Zhao, H. Zhong, S. Wang, and G.Y. Liu, Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation, J. Ind. Eng. Chem., 33(2016), p. 131. doi: 10.1016/j.jiec.2015.09.027
    N. Kupka and M. Rudolph, Froth flotation of scheelite—A review, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 373. doi: 10.1016/j.ijmst.2017.12.001
    W. Bernhart, Processing of tungsten bearing ores-mineral processing and metallurgy, [in] MultiScience-XXIX. MicroCAD International Multidisciplinary Scientific Conference, University of Miskolc, 2015. http://www.uni-miskolc.hu/~microcad/publikaciok/2015/B4_Bernhart_Wolfram.pdf
    Y.X. Li and C.G. Li, Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. I. Selective flotation of scheelite, Int. J. Miner. Process., 10(1983), No. 3, p. 205. doi: 10.1016/0301-7516(83)90011-X
    Z.Y. Gao, D. Bai, W. Sun, X.F. Cao, and Y.H. Hu, Selective flotation of scheelite from calcite and fluorite using a collector mixture, Miner. Eng., 72(2015), p. 23. doi: 10.1016/j.mineng.2014.12.025
    H.S. Han, Y.H. Hu, W. Sun, X.D. Li, C.G. Cao, R.Q. Liu, T. Yue, X.S. Meng, Y.Z. Guo, J.J. Wang, Z.Y. Gao, P. Chen, W.S. Huang, J. Liu, J.W. Xie, and Y.L. Chen, Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice, Int. J. Miner. Process., 159(2017), p. 22. doi: 10.1016/j.minpro.2016.12.006
    Y.S. Gao, Z. Y.Gao, W. Sun, Z.G. Yin, J.J. Wang, and Y.H. Hu, Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation, J. Colloid Interface Sci., 512(2018), p. 39. doi: 10.1016/j.jcis.2017.10.045
    J.J. Wang, Z.Y. Gao, Y.S. Gao, Y.H. Hu, and W. Sun, Flotation separation of scheelite from calcite using mixed cationic/anionic collectors, Miner. Eng., 98(2016), p. 261. doi: 10.1016/j.mineng.2016.09.006
    G. Zhao, S. Wang, and H. Zhong, Study on the activation of scheelite and wolframite by lead nitrate, Minerals, 5(2015), No. 2, p. 247. doi: 10.3390/min5020247
    P.T.L. Koh and L.J. Warren, Flotation of flocs of ultrafine scheelite, Trans. Inst. Min. Metall. Sect. C, 86(1977), p. C93.
    J.Z. Wang, Study on Flotation and Separation Intensification of Complex Refractory Scheelite and its Reaction Mechanism [Dissertation], Northeastern University, Shenyang, 2015.
    J.Z. Wang, W.Z. Yin, and Z.M. Sun, Effect and mechanism of co-depressant of calcite and sodium hexametaphosphate on scheelite flotation, Chin. J. Nonferrous Met., 28(2015), No. 8, p. 1645. doi: 10.19476/j.ysxb.1004.0609.2018.08.19
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(2745) PDF Downloads(289) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint