Lang Liu, Jie Xin, Chao Huan, Yu-jiao Zhao, Xiang Fan, Li-jie Guo, and KI-IL Song, Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 590-602. https://doi.org/10.1007/s12613-020-2007-2
Cite this article as:
Lang Liu, Jie Xin, Chao Huan, Yu-jiao Zhao, Xiang Fan, Li-jie Guo, and KI-IL Song, Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 590-602. https://doi.org/10.1007/s12613-020-2007-2
Research Article

Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique

+ Author Affiliations
  • Corresponding author:

    Lang Liu    E-mail: liulang@xust.edu.cn

  • Received: 23 December 2019Revised: 19 January 2019Accepted: 10 February 2020Available online: 11 February 2020
  • Several special mechanical properties, such as dilatancy and compressibility, of cemented paste backfill (CPB) are controlled by its internal microstructure and evolution. The mesoscopic structure changes of CPB during the development process were investigated. On the basis of the scanning electron microscopy (SEM) and mechanical test results of CPB, the particle size information of CPB was extracted, and a two-dimensional particle flow code (PFC) model of CPB was established to analyze the evolution rule of mesoscopic parameters during CPB development. The embedded FISH language in PFC was used to develop a program for establishing a PFC model on the basis of the SEM results. The mesoscopic parameters of CPB samples at different curing times, such as coordination number (Cn), contact force chain, and rose diagram, were obtained by recording and loading and used to analyze the intrinsic relationship between mesoscopic parameter variations and macroscopic mechanical response during CPB development. It is of considerable significance to establish the physical model of CPB using the PFC to reveal the mesoscopic structure of CPB.
  • loading
  • [1]
    A.T. Cross and H. Lambers, Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings, Sci. Total Environ., 607-608(2017), p. 168. doi: 10.1016/j.scitotenv.2017.07.005
    [2]
    L. Liu, Z.Y. Fang, C.C. Qi, B. Zhang, L.J. Guo, and K.I. Song, Experimental investigation on the relationship between pore characteristics and unconfined compressive strength of cemented paste backfill, Constr. Build. Mater., 179(2018), p. 254. doi: 10.1016/j.conbuildmat.2018.05.224
    [3]
    C.C. Qi, Q.S. Chen, A. Fourie, and Q.L. Zhang, An intelligent modelling framework for mechanical properties of cemented paste backfill, Miner. Eng., 123(2018), p. 16. doi: 10.1016/j.mineng.2018.04.010
    [4]
    C.C. Qi, Q.S. Chen, A. Fourie, J.W. Zhao, and Q.L. Zhang, Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study, Powder Technol., 333(2018), p. 9. doi: 10.1016/j.powtec.2018.03.070
    [5]
    A.X. Wu, Y. Wang, H.J. Wang, S.H. Yin, and X.X. Miao, Coupled effects of cement type and water quality on the properties of cemented paste backfill, Int. J. Miner. Process., 143(2015), p. 65. doi: 10.1016/j.minpro.2015.09.004
    [6]
    M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos., 32(2010), No. 10, p. 819. doi: 10.1016/j.cemconcomp.2010.08.002
    [7]
    H. Rong, Z. Min, and H.B. Hou, Pore structure evolution and its effect on strength development of sulfate-containing cemented paste backfill, Minerals, 7(2017), No. 1, p. 8. doi: 10.3390/min7010008
    [8]
    Y. Wang, D.Q. Liu, and Y.Z. Hu, Monitoring of internal failure evolution in cemented paste backfill under uniaxial deformation using in-situ X-ray computed tomography, Arab. J. Geosci., 12(2019), No. 5, art. No. 138. doi: 10.1007/s12517-019-4285-4
    [9]
    Q.S. Liu, D.F. Liu, Y.C. Tian, and X.Y. Liu, Numerical simulation of stress–strain behaviour of cemented paste backfill in triaxial compression, Eng. Geol., 231(2017), p. 165. doi: 10.1016/j.enggeo.2017.10.021
    [10]
    W.B. Xu and P.W. Cao, Fracture behaviour of cemented tailing backfill with pre-existing crack and thermal treatment under three-point bending loading: Experimental studies and particle flow code simulation, Eng. Fract. Mech., 195(2018), p. 129. doi: 10.1016/j.engfracmech.2018.04.008
    [11]
    S. Cao, E. Yilmaz, and W.D. Song, Dynamic response of cement–tailings matrix composites under SHPB compression load, Constr. Build. Mater., 186(2018), p. 892. doi: 10.1016/j.conbuildmat.2018.08.009
    [12]
    E. Yilmaz, T. Belem, and M. Benzaazoua, Study of physico-chemical and mechanical characteristics of consolidated and unconsolidated cemented paste backfills, Gospod. Surowcami Min., 29(2013), No. 1, p. 81.
    [13]
    C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), p. 106025. doi: 10.1016/j.mineng.2019.106025
    [14]
    Q.S. Chen, Q.L. Zhang, A. Fourie, X. Chen, and C.C. Qi, Experimental investigation on the strength characteristics of cement paste backfill in a similar stope model and its mechanism, Constr. Build. Mater., 154(2017), p. 34. doi: 10.1016/j.conbuildmat.2017.07.142
    [15]
    Q.S. Chen, Q.L. Zhang, C.C. Qi, A. Fourie, and C.C. Xiao, Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact, J. Cleaner Prod., 186(2018), p. 418. doi: 10.1016/j.jclepro.2018.03.131
    [16]
    M. Fall, M. Benzaazoua, and S. Ouellet, Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Miner. Eng., 18(2005), No. 1, p. 41. doi: 10.1016/j.mineng.2004.05.012
    [17]
    L. Liu, Z.Y. Fang, Y.P. Wu, X.P. Lai, P. Wang, and K.I. Song, Experimental investigation of solid–liquid two-phase flow in cemented rock–tailings backfill using Electrical Resistance Tomography, Constr. Build. Mater., 175(2018), p. 267. doi: 10.1016/j.conbuildmat.2018.04.139
    [18]
    L. Liu, K.I. Song, D. Lao, and T.H. Kwon, Rheological properties of cemented tailing backfill and the construction of a prediction model, Materials, 8(2015), No. 5, p. 2076. doi: 10.3390/ma8052076
    [19]
    D. Ouattara, T. Belem, M. Mbonimpa, and A. Yahia, Effect of superplasticizers on the consistency and unconfined compressive strength of cemented paste backfills, Constr. Build. Mater., 181(2018), p. 59. doi: 10.1016/j.conbuildmat.2018.05.288
    [20]
    S. Cao, E. Yilmaz, W.D. Song, E. Yilmaz, and G.L. Xue, Loading rate effect on uniaxial compressive strength behavior and acoustic emission properties of cemented tailings backfill, Constr. Build. Mater., 213(2019), p. 313. doi: 10.1016/j.conbuildmat.2019.04.082
    [21]
    H.Q. Jiang, Z.J. Qi, E. Yilmaz, J. Han, J.P. Qiu, and C.L. Dong, Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills, Constr. Build. Mater., 218(2019), p. 689. doi: 10.1016/j.conbuildmat.2019.05.162
    [22]
    T. Yılmaz, B. Ercikdi, and H. Deveci, Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings, J. Environ. Manage., 222(2018), p. 250. doi: 10.1016/j.jenvman.2018.05.075
    [23]
    Y.L. Huang, J.M. Li, Y.L. Teng, X.J. Dong, X. Wang, G.Q. Kong, and T.Q. Song, Numerical simulation study on macroscopic mechanical behaviors and micro-motion characteristics of gangues under triaxial compression, Powder Technol., 320(2017), p. 668. doi: 10.1016/j.powtec.2017.08.002
    [24]
    E. Yilmaz, A. Kesimal, and B. Ercikdi, The factors affecting the strength and stability of paste backfill, Yerbilimleri Bull. Earth Sci., 28(2003), p. 155.
    [25]
    S. Cao, E. Yilmaz, and W.D. Song, Fiber type effect on strength, toughness and microstructure of early age cemented tailings backfill, Constr. Build. Mater., 223(2019), p. 44. doi: 10.1016/j.conbuildmat.2019.06.221
    [26]
    L. Kong, F.X. Chen, and J. Li, Meso-direct-shear test of sand based on digital image correlation method and its PFC numerical simulation, Rock Soil Mech., 34(2013), No. 10, p. 2971.
    [27]
    L. Liu, C. Zhu, C.C. Qi, B. Zhang, and K.I. Song, A microstructural hydration model for cemented paste backfill considering internal sulfate attacks, Constr. Build. Mater., 211(2019), p. 99. doi: 10.1016/j.conbuildmat.2019.03.222
    [28]
    Z.Y. Song, H. Konietzky, and M. Herbst, Three-dimensional particle model based numerical simulation on multi-level compressive cyclic loading of concrete, Constr. Build. Mater., 225(2019), p. 661. doi: 10.1016/j.conbuildmat.2019.07.260
    [29]
    G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Compressive strength characteristics of cemented tailings backfill with alkali-activated slag, Appl. Sci., 8(2018), No. 9, p. 1537. doi: 10.3390/app8091537
    [30]
    X. Chen, X.Z. Shi, J. Zhou, X.H. Du, Q.S. Chen, and X.Y. Qiu, Effect of overflow tailings properties on cemented paste backfill, J. Environ. Manage., 235(2019), p. 133. doi: 10.1016/j.jenvman.2019.01.040
    [31]
    B. Zhang, J. Xin, L. Liu, L.J. Guo, and K.I. Song, An experimental study on the microstructures of cemented paste backfill during its developing process, Adv. Civ. Eng., (2018), art. No. 9783046.
    [32]
    X.B. Qin, P. Wang, L. Liu, M. Wang, and J. Xin, Sensitivity analysis of microstructure parameters and mechanical strength during consolidation of cemented paste backfill, Math. Prob. Eng., (2018), art. No. 5170721
    [33]
    L. Liu, J. Xin, C. Huan, C.C. Qi, W.W. Zhou, and K.I. Song, Pore and strength characteristics of cemented paste backfill using sulphide tailings: Effect of sulphur content, Constr. Build. Mater., 237(2020), art. No. 117452. doi: 10.1016/j.conbuildmat.2019.117452
    [34]
    L. Liu, J. Xin, Y. Feng, B. Zhang, and K.I. Song, Effect of the cement–tailing ratio on the hydration products and microstructure characteristics of cemented paste backfill, Arab. J. Sci. Eng., 44(2019), No. 7, p. 6547. doi: 10.1007/s13369-019-03954-z
    [35]
    B. Sun, X. Wang, and Z.X. Li, Meso-scale image-based modeling of reinforced concrete and adaptive multi-scale analyses on damage evolution in concrete structures, Comput. Mater. Sci., 110(2015), p. 39. doi: 10.1016/j.commatsci.2015.07.050
    [36]
    Y. Ju, H.F. Sun, M.X. Xing, X.F. Wang, and J.T. Zheng, Numerical analysis of the failure process of soil–rock mixtures through computed tomography and PFC3D models, Int. J. Coal Sci. Technol., 5(2018), No. 2, p. 126. doi: 10.1007/s40789-018-0194-5
    [37]
    C. Liu, B. Shi, J. Zhou, and C.S. Tang, Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials, Appl. Clay Sci., 54(2011), No. 1, p. 97. doi: 10.1016/j.clay.2011.07.022
    [38]
    W. Sun, K.P. Hou, Z.Q. Yang and Y.M. Wen, X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression, Constr. Build. Mater., 138(2017), p. 69. doi: 10.1016/j.conbuildmat.2017.01.088
    [39]
    B. Koohestani, A.K. Darban, and P. Mokhtari, A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill, Constr. Build. Mater., 173(2018), p. 180. doi: 10.1016/j.conbuildmat.2018.03.265
    [40]
    J.J. Wu, M.H.E. Naggar, X.N. Li, and H. Wen, DEM analysis of geobag wall system filled with recycled concrete aggregate, Constr. Build. Mater., 238(2020), art. No. 117684. doi: 10.1016/j.conbuildmat.2019.117684
    [41]
    C.Y. Fan, The Direct Shear Test on Clay Materials Based on Particle Flow Code [Dissertation], Chang’an University, Xi’an, 2017.
    [42]
    X. Qin, L. Lang, W. Pai, W. Mei, and X. Jie, Microscopic parameter extraction and corresponding strength prediction of cemented paste backfill at different curing times, Adv. Civ. Eng., (2018), art. No. 2837571.
    [43]
    M.C. Chen, K. Wang, and L. Xie, Deterioration mechanism of cementitious materials under acid rain attack, Eng. Fail. Anal., 27(2013), p. 272.
    [44]
    N.P. Kruyt and L. Rothenburg, A strain–displacement–fabric relationship for granular materials, Int. J. Solids Struct., 165(2019), p. 14. doi: 10.1016/j.ijsolstr.2019.01.028
    [45]
    J.H. Liu, Y. Wang, K.L.Fu, and K. Zhong, Force analysis of anchor bolts reinforcing rock slope under simple harmonic vibration load, Rock Soil Mech., 33(2012), No. S1, p. 85.
    [46]
    J.Q. Tian and E.L. Liu, Influences of particle shape on evolutions of force-chain and micro-macro parameters at critical state for granular materials, Powder Technol., 354(2019), p. 906. doi: 10.1016/j.powtec.2019.07.018
    [47]
    S.J. Chen, Z.W. Du, Z. Zhang, H.W. Zhang, Z.G. Xia, and F. Feng, Effects of chloride on the early mechanical properties and microstructure of gangue-cemented paste backfill, Constr. Build. Mater., 235(2020), art. No. 117504. doi: 10.1016/j.conbuildmat.2019.117504
    [48]
    Y. Liu, S.C. Wu, and J. Zhou, Numerical simulation of sand deformation under monotonic loading and mesomechanical analysis, Rock Soil Mech., 29(2008), No. 12, p. 3199.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(5)

    Share Article

    Article Metrics

    Article views (1943) PDF downloads(54) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return