Dao-lin Wang, Qin-li Zhang, Qiu-song Chen, Chong-chong Qi, Yan Feng, and Chong-chun Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1438-1448. https://doi.org/10.1007/s12613-020-2022-3
Cite this article as:
Dao-lin Wang, Qin-li Zhang, Qiu-song Chen, Chong-chong Qi, Yan Feng, and Chong-chun Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1438-1448. https://doi.org/10.1007/s12613-020-2022-3
Research Article

Temperature variation characteristics in flocculation settlement of tailings and its mechanism

+ Author Affiliations
  • Corresponding author:

    Qiu-song Chen    E-mail: qiusong.chen@csu.edu.cn

  • Received: 5 December 2019Revised: 13 January 2020Accepted: 16 February 2020Available online: 20 February 2020
  • Rapid flocculation and settlement (FS) of mine tailings is significant for the improvement and development of the filling process, whereas the settlement velocity (SV) of tailings in FS has been recognized as a key parameter to evaluate the settlement effect. However, the influence of temperature on the SV and its mechanism have not been studied. FS experiments on tailings with various ambient temperatures were carried out. The SVs of tailings with a solid waste content of 10wt% and an anionic polyacrylamide content of 20 g·t−1 were measured at different temperatures. The SV presented an “N”-shaped variation curve as the temperature changed from 5 to 40°C. The mechanism of these results can be explained from the perspective of the electric double-layer repulsive force, molecular dynamics, and the polymer flocculation principle, as revealed from the scanning electron microscopy of floc particles. The findings will be beneficial in the design of tailings dewatering processes and save costs in the production of cemented paste backfill.

  • loading
  • [1]
    M. Benzaazoua, M. Fall, and T. Belem, A contribution to understanding the hardening process of cemented pastefill, Miner. Eng., 17(2004), No. 2, p. 141. doi: 10.1016/j.mineng.2003.10.022
    F. Cihangir, B. Ercikdi, A. Kesimal, H. Deveci, and F. Erdemir, Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties, Miner. Eng., 83(2015), p. 117. doi: 10.1016/j.mineng.2015.08.022
    S. Cao, W.D. Song, and E. Yilmaz, Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., 174(2018), p. 190. doi: 10.1016/j.conbuildmat.2018.04.126
    C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
    L. Panda, P.K. Banerjee, S.K. Biswal, R. Venugopal, and N.R. Mandre, Performance evaluation for selectivity of the flocculant on hematite in selective flocculation, Int. J. Miner. Metall. Mater., 20(2013), No. 12, p. 1123. doi: 10.1007/s12613-013-0844-y
    M. Fall, D. Adrien, J.C. Célestin, M. Pokharel, and M. Touré, Saturated hydraulic conductivity of cemented paste backfill, Miner. Eng., 22(2009), No. 15, p. 1307. doi: 10.1016/j.mineng.2009.08.002
    Y. He, Q.S. Chen, C.C. Qi, Q.L. Zhang, and C.C. Xiao, Lithium slag and fly ash-based binder for cemented fine tailings backfill, J. Environ. Manage., 248(2019), art. No. 109282. doi: 10.1016/j.jenvman.2019.109282
    Q.S. Chen, Q.L. Zhang, C.C. Qi, A. Fourie, and C.C. Xiao, Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact, J. Cleaner Prod., 186(2018), p. 418. doi: 10.1016/j.jclepro.2018.03.131
    D.Q. Deng, L. Liu, Z.L. Yao, K.I.-I.L. Song, and D.Z. Lao, A practice of ultra-fine tailings disposal as filling material in a gold mine, J. Environ. Manage., 196(2017), p. 100. doi: 10.1016/j.jenvman.2017.02.056
    Y. Wang, A.X. Wu, Z.E. Ruan, H.J. Wang, Y.M. Wang, and F. Jin, Temperature effects on rheological properties of fresh thickened copper tailings that contain cement, J. Chem., 2018(2018), art. No. 5082636.
    O. Nasir and M. Fall, Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages, Tunnelling Underground Space Technol., 25(2010), No. 1, p. 9. doi: 10.1016/j.tust.2009.07.008
    D. Wu and S.J. Cai, Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill, J. Cent. South Univ., 22(2015), No. 5, p. 1956. doi: 10.1007/s11771-015-2715-3
    J.Y. Petit, E. Wirquin, and K.H. Khayat, Effect of temperature on the rheology of flowable mortars, Cem. Concr. Compos., 32(2010), No. 1, p. 43. doi: 10.1016/j.cemconcomp.2009.10.003
    C.S.B. Fitzpatrick, E. Fradin, and J. Gregory, Temperature effects on flocculation, using different coagulants, Water Sci. Technol., 50(2004), No. 12, p. 171. doi: 10.2166/wst.2004.0710
    E. Burdukova, N. Ishida, T. Shaddick, and G.V. Franks, The size of particle aggregates produced by flocculation with PNIPAM, as a function of temperature, J. Colloid Interface Sci., 354(2011), No. 1, p. 82. doi: 10.1016/j.jcis.2010.10.016
    M.K.H. Winkler, J.P. Bassin, R. Kleerebezem, R.G.J.M. van der Lans, and M.C.M van Loosdrecht, Temperature and salt effects on settling velocity in granular sludge technology, Water Res., 46(2012), No. 12, p. 3897. doi: 10.1016/j.watres.2012.04.034
    M. Rasmusson and B. Vincent, Flocculation of microgel particles, React. Funct. Polym., 58(2004), No. 3, p. 203. doi: 10.1016/j.reactfunctpolym.2003.08.007
    G.Q. Qiao, J.F. Zhang, and Q.H. Zhang, Study on the influence of temperature to cohesive sediment flocculation, J. Sediment Res., 42(2017), No. 2, p. 35.
    Y.Y. Wan, H.L. Wu, Q. Shen, and F.F. Gu, Experimental study on the settling velocity of suspended sediment in the Yangtze River Estuary, Mar. Sci., 39(2015), No. 8, p. 78.
    Y.L. Lau, Temperature effect on settling velocity and deposition of cohesive sediments, J. Hydraul. Res., 32(1994), No. 1, p. 41. doi: 10.1080/00221689409498788
    T.S. Yang, X.Z. Xiong, X.L. Zhan, and M.Q. Yang, On flocculaton of cohesive fine sediment, Hydro-Sci. Eng., 2003, No. 2, p. 65.
    L. Botha and J.B.P. Soares, The influence of tailings composition on flocculation, Can. J. Chem. Eng., 93(2015), No. 9, p. 1514. doi: 10.1002/cjce.22241
    M. Fall, M. Benzaazoua, and S. Ouellet, Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Miner. Eng., 18(2005), No. 1, p. 41. doi: 10.1016/j.mineng.2004.05.012
    Y. Feng, J. Kero, Q.X. Yang, Q.S. Chen, F. Engström, C. Samuelsson, and C.C. Qi, Mechanical activation of granulated copper slag and its influence on hydration heat and compressive strength of blended cement, Materials, 12(2019), No. 5, p. 772. doi: 10.3390/ma12050772
    Y. Feng, Q.X. Yang, Q.S. Chen, J. Kero, A. Andersson, H. Ahmed, F. Engström, and C. Samuelsson, Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO, J. Cleaner Prod., 232(2019), p. 1112. doi: 10.1016/j.jclepro.2019.06.062
    M.T. Rodríguez and H. Pfeiffer, Sodium metasilicate (Na2SiO3): A thermo-kinetic analysis of its CO2 chemical sorption, Thermochim. Acta, 473(2008), No. 1-2, p. 92. doi: 10.1016/j.tca.2008.04.022
    Y.K. Liu, Q.L. Zhang, Q.S. Chen, C.C. Qi, Z. Su, and Z.D. Huang, Utilisation of water-washing pre-treated phosphogypsum for cemented paste backfill, Minerals, 9(2019), No. 3, p. 175. doi: 10.3390/min9030175
    Q.S. Chen, Q.L. Zhang, A. Fourie, and C. Xin, Utilization of phosphogypsum and phosphate tailings for cemented paste backfill, J. Environ. Manage., 201(2017), p. 19. doi: 10.1016/j.jenvman.2017.06.027
    X.J. Xu, Principle of Chemical Flocculant, Science Press, Beijing, 2017, p. 86.
    C. Eswaraiah, S.K. Biswal, and B.K. Mishra, Settling characteristics of ultrafine iron ore slimes, Int. J. Miner. Metall. Mater., 19(2012), No. 2, p. 95. doi: 10.1007/s12613-012-0521-6
    A. Roshani, M. Fall, and K. Kennedy, Impact of drying on geo-environmental properties of mature fine tailings pre-dewatered with super absorbent polymer, Int. J. Environ. Sci. Technol., 14(2017), No. 3, p. 453. doi: 10.1007/s13762-016-1162-5
    J.H. Du, R.A. Pushkarova, and R.S.C. Smart, A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes, Int. J. Miner. Process., 93(2009), No. 1, p. 66. doi: 10.1016/j.minpro.2009.06.004
    R.K. Dwari and B.K. Mishra, Evaluation of flocculation characteristics of kaolinite dispersion system using guar gum: A green flocculant, Int. J. Min. Sci. Technol., 29(2019), No. 5, p. 745. doi: 10.1016/j.ijmst.2019.06.001
    H. Li, M.X. Liu, and Q. Liu, The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector, Miner. Eng., 119(2018), p. 105. doi: 10.1016/j.mineng.2018.01.004
    S.M.R. Shaikh, M.S. Nasser, M. Magzoub, A. Benamor, I.A. Hussein, M.H. El-Naas, and H. Qiblawey, Effect of electrolytes on electrokinetics and flocculation behavior of bentonite-polyacrylamide dispersions, Appl. Clay Sci., 158(2018), p. 46. doi: 10.1016/j.clay.2018.03.017
    P.R. Suresha and M.V. Badiger, Flocculation of kaolin from aqueous suspension using low dosages of acrylamide-based cationic flocculants, J. Appl. Polym. Sci., 136(2018), No. 14, art. No. 47286.
    G. Trefalt, S.H. Behrens, and M. Borkovec, Charge regulation in the electrical double layer: Ion adsorption and surface interactions, Langmuir, 32(2016), No. 2, p. 380. doi: 10.1021/acs.langmuir.5b03611
    D. Ghernaout, A.I. Al-Ghonamy, A. Boucherit, B. Ghernaout, M.W. Naceur, N.A. Messaoudene, M. Aichouni, A.A. Mahjoubi, and N.A. Elboughdiri, Brownian motion and coagulation process, Am. J. Environ. Prot., 4(2015), No. 5-1, p. 1.
    V. Vajihinejad, S.P. Gumfekar, B. Bazoubandi, Z.R. Najafabadi, and J.B.P. Soares, Water soluble polymer flocculants: Synthesis, characterization, and performance assessment, Macromol. Mater. Eng., 304(2019), No. 2, art. No. 1800526. doi: 10.1002/mame.201800526
    Z.S. Liu, J. He, Q. Nie, J.X. Cui, Y. Xiao, L.Z. Zhao, and W.W. Xu, Studies of coagulation mechanism for sludge and sludge water, China Build. Mater. Sci. Technol., 24(2015), No. 6, p. 23.
    E.M.V Hoek and G.K. Agarwal, Extended DLVO interactions between spherical particles and rough surfaces, J. Colloid Interface Sci., 298(2006), No. 1, p. 50. doi: 10.1016/j.jcis.2005.12.031
    R. Abhishek and A.A. Hamouda, Effect of various silica nanofluids: Reduction of fines migrations and surface modification of berea sandstone, Appl. Sci., 7(2017), No. 12, p. 1216. doi: 10.3390/app7121216
    C.Y. Yang and Y.L. Ding, Multi-scale modelling of liquid suspensions of micron particles in the presence of nanoparticles, [in] L.Q. Wang, ed., Advances in Transport Phenomena 2010, Springer, Berlin, 2011, p. 295.
    R.J. Zhang, Dynamics of River Sediments, China Water Power Press, Beijing, 1989, p. 20.
    N.P, Chi, Research on Flocculation Detection Index Based on Fractal Dimension [Dissertation], Chongqing University, Chongqing, 2006, p. 30.
    Y.X. Li, Analysis of half-life formula of particle concentration in flocculation kinetics, Chem. Water Supply Drain. Des., 1995, No. 2, p. 1.
    A. Sze, D. Erickson, L.Q. Ren, and D.Q. Li, Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow, J. Colloid Interface Sci., 261(2003), No. 2, p. 402. doi: 10.1016/S0021-9797(03)00142-5
    E. Dickinsona and L. Erikssonb, Particle flocculation by adsorbing polymers, Adv. Colloid Interface Sci., 34(1991), p. 1. doi: 10.1016/0001-8686(91)80045-L
    S.P. Yeap and S.Y. Tia, Induced rapid magnetic sedimentation of stabilized-Fe3O4 nanoparticles by bridging and depletion flocculation, Chem. Eng. Res. Des., 142(2019), p. 53. doi: 10.1016/j.cherd.2018.12.004
    H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Cleaner Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
    D.R.L. Vedoy and J.B.P. Soares, Water–soluble polymers for oil sands tailing treatment: A review, Can. J. Chem. Eng., 93(2015), No. 5, p. 888. doi: 10.1002/cjce.22129
    S. Cao, E. Yilmaz, and W.D. Song, Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill, Minerals, 8(2018), No. 8, p. 352. doi: 10.3390/min8080352
    M. Dash, R.K. Dwari, S.K. Biswal, P.S.R. Reddy, P. Chattopadhyay, and B.K. Mishra, Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings, Chem. Eng. J., 173(2011), No. 2, p. 318. doi: 10.1016/j.cej.2011.07.034
    H. Wei, B.Q. Gao, J. Ren, A.M. Li, and H. Yang, Coagulation/flocculation in dewatering of sludge: A review, Water Res., 143(2018), p. 608. doi: 10.1016/j.watres.2018.07.029
    M.B. Hocking, K.A. Klinchunk, and S. Lowen, Polymeric flocculants and flocculation, J. Macromol. Sci.,Polym. Rev., 39(1999), No. 2, p. 177. doi: 10.1081/MC-100101419
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(6249) PDF Downloads(160) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint