A. Brahma Swamulu, S. Venugopal Rao, and G. Krishna Podagatlapalli, Non-spherical aluminum nanoparticles fabricated using picosecond laser ablation, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 980-986. https://doi.org/10.1007/s12613-020-2032-1
Cite this article as:
A. Brahma Swamulu, S. Venugopal Rao, and G. Krishna Podagatlapalli, Non-spherical aluminum nanoparticles fabricated using picosecond laser ablation, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 980-986. https://doi.org/10.1007/s12613-020-2032-1
Research Article

Non-spherical aluminum nanoparticles fabricated using picosecond laser ablation

+ Author Affiliations
  • Corresponding author:

    G. Krishna Podagatlapalli    E-mail: gpodagat@gitam.edu;satgurusai.gk@gmail.com

  • Received: 30 October 2019Revised: 29 February 2020Accepted: 2 March 2020Available online: 6 March 2020
  • We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.

  • loading
  • [1]
    S.I. Dolgaev, A.A. Lyalin, A.V. Simakin, V.V. Voronov, and G.A. Shafeev, Fast etching and metallization of via-holes in sapphire with the help of radiation by a copper vapor laser, Appl. Surf. Sci., 109-110(1997), p. 201. doi: 10.1016/S0169-4332(96)00660-5
    [2]
    A.V. Simakin, V.V. Voronov, N.A. Kirichenko, and G.A. Shafeev, Nanoparticles produced by laser ablation of solids in liquid environment, Appl. Phys. A, 79(2004), No. 4-6, p. 1127. doi: 10.1007/s00339-004-2660-8
    [3]
    P.V. Kazakevich, A.V. Simakin, and G.A. Shafeev, Formation of periodic structures upon laser ablation of metal targets in liquids, Quantum Electron., 35(2005), No. 9, p. 831. doi: 10.1070/QE2005v035n09ABEH009144
    [4]
    P.V. Kazakevich, A.V. Simakin, V.V. Voronov, and G.A. Shafeev, Laser induced synthesis of nanoparticles in liquids, Appl. Surf. Sci., 252(2006), No. 13, p. 4373. doi: 10.1016/j.apsusc.2005.06.059
    [5]
    S.L. Truong, G. Levi, F. Bozon-Verduraz, A.V. Petrovskaya, A.V. Simakin, and G.A. Shafeev, Generation of nanospikes via laser ablation of metals in liquid environment and their activity in surface-enhanced Raman scattering of organic molecules, App. Surf. Sci., 254(2007), No. 4, p. 1236. doi: 10.1016/j.apsusc.2007.07.157
    [6]
    N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone, Nanotechnology, 20(2009), No. 44, art. No. 445603. doi: 10.1088/0957-4484/20/44/445603
    [7]
    E. Messina, E. Cavallaro, A. Cacciola, R. Saija, F. Borghese, P. Denti, B. Fazio, C. D’Andrea, P.G. Gucciardi, M.A. Latì, M. Meneghetti, G. Compagnini, V. Amendola, and O.M. Maragò, Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids, J. Phys. Chem. C, 115(2011), No. 12, p. 5115. doi: 10.1021/jp109405j
    [8]
    G.K. Podagatlapalli, S. Hamad, S. Sreedhar, S.P. Tewari, and S. Venugopal Rao, Fabrication and characterization of aluminum nanostructures and nanoparticles obtained using femtosecond ablation technique, Chem. Phys. Lett., 530(2012), p. 93. doi: 10.1016/j.cplett.2012.01.081
    [9]
    G.K. Podagatlapalli, S. Hamad, S.P. Tewari, S. Sreedhar, M.D. Prasad, and S. Venugopal Rao, Silver nano-entities through ultrafast double ablation in aqueous media for surface enhanced Raman scattering and photonics applications, J. Appl. Phys., 113(2013), No. 7, art. No. 073106. doi: 10.1063/1.4792483
    [10]
    T.E. Itina, On nanoparticle formation by laser ablation in liquids, J. Phys. Chem. C, 115(2011), No. 12, p. 5044. doi: 10.1021/jp1090944
    [11]
    N.G. Semaltianos, Nanoparticles by laser ablation, Crit. Rev. Solid State Mater. Sci., 35(2010), No. 2, p. 105. doi: 10.1080/10408431003788233
    [12]
    S. Venugopal Rao, G.K. Podagatlapalli, and S. Hamad, Ultrafast laser ablation in liquids for nanomaterials and applications, J. Nanosci. Nanotechnol., 14(2014), No. 2, p. 1364. doi: 10.1166/jnn.2014.9138
    [13]
    R.M. Tilaki, A.I. Zad, and S.M. Mahdavi, Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media, Appl. Phys. A, 84(2006), No. 1-2, p. 215. doi: 10.1007/s00339-006-3604-2
    [14]
    L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, Pergamon Press, New York, 1989.
    [15]
    B. Kumar, D. Yadav, and R.K. Thareja, Growth dynamics of nanoparticles in laser produced plasma in liquid ambient, J. Appl. Phys., 110(2011), No. 7, art. No. 074903. doi: 10.1063/1.3642968
    [16]
    S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow, Appl. Phys. Lett., 91(2007), No. 8, art. No. 083113. doi: 10.1063/1.2773937
    [17]
    E. Rebollar, J.R.V. de Aldana, I. Martín-Fabiani, M. Hernández, D.R. Rueda, T.A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, Assessment of femtosecond laser induced periodic surface structures on polymer films, Phys. Chem. Chem. Phys., 15(2013), No. 27, p. 11287. doi: 10.1039/c3cp51523k
    [18]
    J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation, Appl. Phys. A, 104(2011), No. 3, p. 969. doi: 10.1007/s00339-011-6472-3
    [19]
    J. Bonse, A. Rosenfeld, and J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys., 106(2009), No. 10, art. No. 104910. doi: https://doi.org/10.1063/1.3261734
    [20]
    X. Jia, T.Q. Jia, N.N. Peng, D.H. Feng, S.A. Zhang, and Z.R. Sun, Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging, J. Appl. Phys., 115(2014), No. 14, art. No. 143102. doi: https://doi.org/10.1063/1.4870445
    [21]
    F. Costache, M. Henyk, and J. Reif, Modification of dielectric surfaces with ultra-short laser pulses, Appl. Surf. Sci., 186(2002), No. 1-4, p. 352. doi: 10.1016/S0169-4332(01)00675-4
    [22]
    A.Y. Vorobyev and C.L. Guo, Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals, Appl. Phys. A, 86(2007), No. 3, p. 321. doi: 10.1007/s00339-006-3800-0
    [23]
    H.R. Dehghanpour, Laser wavelength and dose effects on Al nanoparticles structural formation in deionized water, J. Laser Appl., 28(2016), No. 4, art. No. 042007. doi: https://doi.org/10.2351/1.4963398
    [24]
    E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G.A. Shafeev, Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids, Appl. Surf. Sci., 255(2009), No. 10, p. 5346. doi: 10.1016/j.apsusc.2008.07.183
    [25]
    E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G.A. Shafeev, Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses, Opt. Express, 17(2009), No. 15, p. 12650. doi: 10.1364/OE.17.012650
    [26]
    E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G.A. Shafeev, Laser writing of nanostructures on bulk Al via its ablation in liquids, Nanotechnology, 20(2009), No. 10, art. No. 105303. doi: 10.1088/0957-4484/20/10/105303
    [27]
    J. Sun and S.L. Simon, The melting behavior of aluminum nanoparticles, Thermochim. Acta, 463(2007), No. 1-2, p. 32. doi: 10.1016/j.tca.2007.07.007
    [28]
    G.K. Podagatlapalli, S. Hamad, M.A. Mohiddon, and S.V. Rao, Fabrication of nanoparticles and nanostructures using ultrafast laser ablation of silver with Bessel beams, Laser Phys. Lett., 12(2015), No. 3, p. 036003. doi: 10.1088/1612-2011/12/3/036003
    [29]
    D.S. Zhang, B. Gökce, and S. Barcikowski, Laser synthesis and processing of colloids: Fundamentals and applications, Chem. Rev., 117(2017), No. 5, p. 3990. doi: 10.1021/acs.chemrev.6b00468
    [30]
    A. Santagata, A. De Bonis, A. De Giacomo, M. Dell’Aglio, A. Laurita, G.S. Senesi, R. Gaudiuso, S. Orlando, R. Teghil, and G.P. Parisi, Carbon-based nanostructures obtained in water by ultrashort laser pulses, J. Phys. Chem. C, 115(2011), No. 12, p. 5160. doi: 10.1021/jp1094239
    [31]
    A. Menéndez-Manjón, B.N. Chichkov, and S. Barcikowski, Influence of water temperature on the hydrodynamic diameter of gold nanoparticles from laser ablation, J. Phys. Chem. C, 114(2010), No. 6, p. 2499. doi: 10.1021/jp909897v
    [32]
    A. De Bonis, M. Sansone, L. D’Alessio, A. Galasso, A. Santagata, and R. Teghil, Dynamics of laser-induced bubble and nanoparticles generation during ultra-short laser ablation of Pd in liquid, J. Phys. D:Appl. Phys., 46(2013), No. 44, p. 445301. doi: 10.1088/0022-3727/46/44/445301
    [33]
    D. Jost, W. Lüthy, and H.P. Weber, Laser pulse width dependent surface ripples on silicon, Appl. Phys. Lett., 49(1986), No. 11, p. 625. doi: 10.1063/1.97060
    [34]
    P.M. Fauchet and A.E. Siegman, Surface ripples on silicon and gallium arsenide under picosecond laser illumination, Appl. Phys. Lett., 40(1982), No. 9, p. 824. doi: 10.1063/1.93274
    [35]
    J.E. Sipe, J.F. Young, J.S. Preston, and H.M. van Driel, Laser-induced periodic surface structure. I. Theory, Phys. Rev. B, 27(1983), No. 2, p. 1141. doi: 10.1103/PhysRevB.27.1141
    [36]
    P.A. Temple and M.J. Soileau, Polarization charge model for laser-induced ripple patterns in dielectric materials, IEEE J. Quantum Electron., 17(1981), No. 10, p. 2067. doi: 10.1109/JQE.1981.1070638
    [37]
    M. Huang, F.L. Zhao, Y. Cheng, N.S., Xu, and Z.Z. Xu, Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser, ACS Nano, 3(2009), No. 12, p. 4062. doi: 10.1021/nn900654v
    [38]
    J. Reif, O. Varlamova, and F. Costache, Femtosecond laser induced nanostructure formation: Self-organization control parameters, Appl. Phys. A, 92(2008), No. 4, p. 1019. doi: 10.1007/s00339-008-4671-3
    [39]
    T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, Effect of surface roughening on femtosecond laser-induced ripple structures, Appl. Phys. Lett., 90(2007), No. 15, art. No. 153115. doi: 10.1063/1.2720709
    [40]
    D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, and J. Bonse, Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO, J. Appl. Phys., 105(2009), No. 3, art. No. 034908. doi: 10.1063/1.3074106
    [41]
    L. Xue, J.J. Yang, Y. Yang, Y.S. Wang, and X.N. Zhu, Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses, Appl. Phys. A, 109(2012), No. 2, p. 357. doi: 10.1007/s00339-012-7261-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Share Article

    Article Metrics

    Article Views(1576) PDF Downloads(42) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return