Tian-dang Huang, Shi-yu Wu, Hui Jiang, Yi-ping Lu, Tong-min Wang, and Ting-ju Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1318-1325. https://doi.org/10.1007/s12613-020-2040-1
Cite this article as:
Tian-dang Huang, Shi-yu Wu, Hui Jiang, Yi-ping Lu, Tong-min Wang, and Ting-ju Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1318-1325. https://doi.org/10.1007/s12613-020-2040-1
Research Article

Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys

+ Author Affiliations
  • Corresponding author:

    Yi-ping Lu    E-mail: luyiping@dlut.edu.cn

  • Received: 27 December 2019Revised: 29 February 2020Accepted: 6 March 2020Available online: 9 March 2020
  • This study aimed to investigate the microstructure and mechanical properties of TixZrVNb (x = 1, 1.5, 2) refractory high-entropy alloys at room and elevated temperatures. The TiZrVNb alloy consisted of the body-centered cubic (bcc) matrix with a small amount of V2Zr phase. The Ti1.5ZrVNb and Ti2ZrVNb alloys exhibited a single-phase bcc structure. At room temperature, the tensile ductility of the as-cast alloys increased from 3.5% to 12.3% with the increase in the Ti content. The TixZrVNb alloys exhibited high yield strength at 600°C, and the ultimate yield strength was more than 900 MPa. Softening occurred at 800°C, but the ultimate yield strength could still exceed 200 MPa. Moreover, the TixZrVNb alloys displayed low densities but high specific yield strengths (SYSs). The lowest density of TixZrVNb alloys was only 6.12 g/cm3, but the SYS could reach about 180 MPa·cm3·g−1, which is better than those of most reported high-entropy alloys (HEAs).

  • loading
  • [1]
    J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
    [2]
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
    [3]
    M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, Cham, Switzerland, 2016.
    [4]
    O.N. Senkov, J.K. Jensen, A.L. Pilchak, D.B. Miracle, and H.L. Fraser, Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, Mater. Des., 139(2018), p. 498. doi: 10.1016/j.matdes.2017.11.033
    [5]
    B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater., 96(2015), p. 258. doi: 10.1016/j.actamat.2015.06.025
    [6]
    X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, and Y.H. Zhao, Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy, Acta Mater., 141(2017), p. 59. doi: 10.1016/j.actamat.2017.07.041
    [7]
    S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, and Y. Zhang, Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification, Intermetallics, 54(2014), p. 104. doi: 10.1016/j.intermet.2014.05.018
    [8]
    M. Vaidya, K. Guruvidyathri, and B.S. Murty, Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys, J. Alloys Compd., 774(2019), p. 856. doi: 10.1016/j.jallcom.2018.09.342
    [9]
    Z.Y. Rao, X. Wang, Q.J. Wang, T. Liu, X.H. Chen, L. Wang, and X.D. Hui, Microstructure, mechanical properties, and oxidation behavior of AlxCr0.4CuFe0.4MnNi high entropy alloys, Adv. Eng. Mater., 19(2017), No. 5, art. No. 1600726. doi: 10.1002/adem.201600726
    [10]
    M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and wear behaviour of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater., 59(2011), No. 16, p. 6308. doi: 10.1016/j.actamat.2011.06.041
    [11]
    C.Y. Shang, E. Axinte, J. Sun, X.T. Li, P. Li, J.W. Du, P.C. Qiao, and Y. Wang, CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering, Mater. Des., 117(2017), p. 193. doi: 10.1016/j.matdes.2016.12.076
    [12]
    T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 549. doi: 10.1007/s12613-013-0764-x
    [13]
    D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
    [14]
    M.C. Gao, C.S. Carney, Ö.N. Doğan, P.D. Jablonksi, J.A. Hawk, and D.E. Alman, Design of refractory high-entropy alloys, JOM, 67(2015), No. 11, p. 2653. doi: 10.1007/s11837-015-1617-z
    [15]
    H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling, J. Alloys Compd., 696(2017), p. 1139. doi: 10.1016/j.jallcom.2016.11.188
    [16]
    Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., 130(2014), p. 277. doi: 10.1016/j.matlet.2014.05.134
    [17]
    O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
    [18]
    H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.-J. Christ, and M. Heilmaier, Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al, J. Alloys Compd., 661(2016), p. 206. doi: 10.1016/j.jallcom.2015.11.050
    [19]
    O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng. A, 565(2013), p. 51. doi: 10.1016/j.msea.2012.12.018
    [20]
    N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, and M.A. Tikhonovsky, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Mater. Lett., 142(2015), p. 153. doi: 10.1016/j.matlet.2014.11.162
    [21]
    C.H. Chang, M.S. Titus, and J.W. Yeh, Oxidation behavior between 700 and 1300°C of refractory TiZrNbHfTa high-entropy alloys containing aluminum, Adv. Eng. Mater., 20(2018), No. 6, art. No. 1700948. doi: 10.1002/adem.201700948
    [22]
    Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gao, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, and T.J. Li, A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy, J. Mater. Sci. Technol., 35(2019), No. 3, p. 369. doi: 10.1016/j.jmst.2018.09.034
    [23]
    O.N. Senkov, S. Rao, K.J. Chaput, and C. Woodward, Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys, Acta Mater., 151(2018), p. 201. doi: 10.1016/j.actamat.2018.03.065
    [24]
    H. Chen, A. Kauffmann, S. Seils, T. Boll, C.H. Liebscher, I. Harding, K.S. Kumar, D.V. Szabó, S. Schlabach, S. Kauffmann-Weiss, F. Müller, B. Gorr, H.-J. Christ, and M. Heilmaier, Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al, Acta Mater., 176(2019), p. 123. doi: 10.1016/j.actamat.2019.07.001
    [25]
    O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie, Development and exploration of refractory high entropy alloys—A review, J. Mater. Res., 33(2018), No. 19, p. 3092. doi: 10.1557/jmr.2018.153
    [26]
    N.Y. Yurchenko, N.D. Stepanov, A.O. Gridneva, M.V. Mishunin, G.A. Salishchev, and S.V. Zherebtsov, Effect of Cr and Zr on phase stability of refractory Al–Cr–Nb–Ti–V–Zr high-entropy alloys, J. Alloys Compd., 757(2018), p. 403. doi: 10.1016/j.jallcom.2018.05.099
    [27]
    N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys, Mater. Sci. Eng. A, 704(2017), p. 82. doi: 10.1016/j.msea.2017.08.019
    [28]
    S.P. Wang and J. Xu, (TiZrNbTa)–Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modelling of solid solution strengthening, Intermetallics, 95(2018), p. 59. doi: 10.1016/j.intermet.2018.01.017
    [29]
    J. Chen, X.Y. Zhou, W.L. Wang, B. Liu, Y.K. Lv, W. Yang, D.P. Xu, and Y. Liu, A review on fundamental of high entropy alloys with promising high-temperature properties, J. Alloys Compd., 760(2018), p. 15. doi: 10.1016/j.jallcom.2018.05.067
    [30]
    Y. Zou, P. Okle, H. Yu, T. Sumigawa, T. Kitamura, S. Maiti, W. Steurer, and R. Spolenak, Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies, Scripta Mater., 128(2017), p. 95. doi: 10.1016/j.scriptamat.2016.09.036
    [31]
    K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, and Y.S. Na, Dual-phase high-entropy alloys for high-temperature structural applications, J. Alloys Compd., 728(2017), p. 1235. doi: 10.1016/j.jallcom.2017.09.089
    [32]
    N.P. Lyakishev, ed., Phase Diagrams of Binary Metal Systems: A Handbook, Q.W. Guo, trans., Chemical Industry Press, Beijing, 2009.
    [33]
    J.X. Cui, C.P. Guo, L. Zou, C.R. Li, and Z.M. Du, Experimental investigation and thermodynamic modeling of the Ti–V–Zr system, Calphad, 55(2016), p. 189. doi: 10.1016/j.calphad.2016.09.003
    [34]
    W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data, Springer Berlin Heidelberg, New York, 2005.
    [35]
    Matweb Material Property Data [2020-07-18]. http://www.matweb.com/
    [36]
    O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis, Acta Mater., 61(2013), No. 5, p. 1545. doi: 10.1016/j.actamat.2012.11.032
    [37]
    D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, and T.J. Li, A novel series of refractory high-entropy alloys Ti2ZrHf0.5VNbx with high specific yield strength and good ductility, Acta Metall. Sinica, 32(2019), No. 8, p. 925. doi: 10.1007/s40195-019-00921-3
    [38]
    Z.Q. Xu, Z.L. Ma, M. Wang, Y.W. Chen, Y.D. Tan, and X.W. Cheng, Design of novel low-density refractory high entropy alloys for high-temperature applications, Mater. Sci. Eng. A, 755(2019), p. 318. doi: 10.1016/j.msea.2019.03.054
    [39]
    O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci., 47(2012), No. 9, p. 4062. doi: 10.1007/s10853-012-6260-2
    [40]
    O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758. doi: 10.1016/j.intermet.2010.05.014
    [41]
    T.D. Huang, L. Jiang, C.L. Zhang, H. Jiang, Y.P. Lu, and T.J. Li, Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Sci. China,Technol. Sci., 61(2018), p. 117. doi: 10.1007/s11431-017-9134-6
    [42]
    Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G.Y. Wang, G.F. Zhao, F.Q. Yang, and P.K. Liaw, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenisation, Mater. Sci. Eng. A, 647(2015), p. 229. doi: 10.1016/j.msea.2015.08.078
    [43]
    Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des., 57(2014), p. 67. doi: 10.1016/j.matdes.2013.12.048
    [44]
    A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng. A, 533(2012), p. 107. doi: 10.1016/j.msea.2011.11.045
    [45]
    J.M. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu, Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys, J. Alloys Compd., 497(2010), No. 1-2, p. 52. doi: 10.1016/j.jallcom.2010.03.074
    [46]
    N.D. Stepanov, N.Y. Yurchenko, V.S. Sokolovsky, M.A. Tikhonovsky, and G.A. Salishchev, An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility, Mater. Lett., 161(2015), p. 136. doi: 10.1016/j.matlet.2015.08.099
    [47]
    N.D. Stepanov, N.Y. Yurchenko, E.S. Panina, M.A. Tikhonovsky, and S.V. Zherebtsov, Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy, Mater. Lett., 188(2017), p. 162. doi: 10.1016/j.matlet.2016.11.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(2907) PDF Downloads(91) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return