Cite this article as: |
Slađana Laketić, Marko Rakin, Miloš Momčilović, Jovan Ciganović, Đorđe Veljović, and Ivana Cvijović-Alagić, Surface modifications of biometallic commercially pure Ti and Ti–13Nb–13Zr alloy by picosecond Nd:YAG laser, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 285-295. https://doi.org/10.1007/s12613-020-2061-9 |
Ivana Cvijović-Alagić E-mail: ivanac@vinca.rs
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values. During the interaction of laser irradiation with the investigated materials, a part of the energy was absorbed on the target surface, influencing surface modifications. Laser beam interaction with the target surface resulted in various morphological alterations, resulting in crater formation and the presence of microcracks and hydrodynamic structures. Moreover, different chemical changes were induced on the target materials’ surfaces, resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption. Given the high energy absorption at the site of interaction, the dimensions of the surface damaged area increased. Consequently, surface roughness increased. The appearance of surface oxides also led to the increased material hardness in the surface-modified area. Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.
[1] |
E.P. Ivanova, K. Bazaka, and R.J. Crawford, New Functional Biomaterials for Medicine and Healthcare, Woodhead Publishing, Cambridge, 2014, p. 121.
|
[2] |
Q.Z. Chen and G.A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng. R, 87(2015), p. 1. doi: 10.1016/j.mser.2014.10.001
|
[3] |
M. Long and H.J. Rack, Titanium alloys in total joint replacement—A materials science perspective, Biomaterials, 19(1998), No. 18, p. 1621. doi: 10.1016/S0142-9612(97)00146-4
|
[4] |
M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Prog. Mater. Sci., 54(2009), No. 3, p. 397. doi: 10.1016/j.pmatsci.2008.06.004
|
[5] |
I. Cvijović-Alagić, Z. Cvijović, S. Mitrović, V. Panić, and M. Rakin, Wear and corrosion behaviour of Ti–13Nb–13Zr and Ti–6Al–4V alloys in simulated physiological solution, Corros. Sci., 53(2011), No. 2, p. 796. doi: 10.1016/j.corsci.2010.11.014
|
[6] |
N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, 1997, p. 954.
|
[7] |
V.A. Joshi, Titanium alloys: An Atlas of Structures and Fracture Features, CRC Press, Boca Raton, Florida, 2006.
|
[8] |
I. Dimić, I. Cvijović-Alagić, B. Völker, A. Hohenwarter, R. Pippan, Đ. Veljović, M. Rakin, and B. Bugarski, Microstructure and metallic ion release of pure titanium and Ti–13Nb–13Zr alloy processed by high pressure torsion, Mater. Des., 91(2016), p. 340. doi: 10.1016/j.matdes.2015.11.088
|
[9] |
M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material, Biomaterials, 24(2003), No. 23, p. 4197. doi: 10.1016/S0142-9612(03)00318-1
|
[10] |
H.F. Hildebrand and J.C. Hornez, Biological response and biocompatibility, [in] J.A. Helsen and H.J. Breme, eds., Metals as Biomaterials, John Wiley and Sons Ltd, Chichester, 1998, p. 265.
|
[11] |
M. Plecko, C. Sievert, D. Andermatt, R. Frigg, P. Kronen, K. Klein, S. Stübinger, K. Nuss, A. Bürki, S. Ferguson, U. Stoeckle, and B. von Rechenberg, Osseointegration and biocompatibility of different metal implants - A comparative experimental investigation in sheep, BMC Musculoskelet. Disord., 13(2012), art. No. 32. doi: 10.1186/1471-2474-13-32
|
[12] |
I. Cvijović-Alagić, Damage and Fracture Resistance of Titanium Based Alloys for Medical Application [Dissertation], University of Belgrade, Belgrade, 2013.
|
[13] |
I. Cvijović-Alagić, Z. Cvijović, J. Bajat, and M. Rakin, Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys, Corros. Sci., 83(2014), p. 245. doi: 10.1016/j.corsci.2014.02.017
|
[14] |
I. Dimić, I. Cvijović-Alagić, A. Hohenwarter, R. Pippan, V. Kojić, J. Bajat, and M. Rakin, Electrochemical and biocompatibility examinations of high pressure torsion processed titanium and Ti–13Nb–13Zr alloy, J. Biomed. Mater. Res. Part B, 106(2018), No. 3, p. 1097. doi: 10.1002/jbm.b.33919
|
[15] |
A. Nouri and C. Wen, 1 - Introduction to surface coating and modification for metallic biomaterials, [in] C. Wen, ed., Surface Coating and Modification of Metallic Biomaterials, Woodhead Publishing, Cambridge, 2015, p. 3.
|
[16] |
X.Y. Liu, P.K. Chu, and C.X. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R, 47(2004), No. 3-4, p. 49. doi: 10.1016/j.mser.2004.11.001
|
[17] |
F.A. Shah, K. Grandfield, and A. Palmquist, Laser surface modification and the tissue–implant interface, [in] R. Vilar, ed., Laser Surface Modification of Biomaterials: Techniques and Applications, Woodhead Publishing, Duxford, 2016, p. 253.
|
[18] |
M.S. Brown and C.B. Arnold, Fundamentals of laser-material interaction and application to multiscale surface modification, [in] K. Sugioka, M. Meunier, and A. Piqué, eds., Laser Precision Microfabrication, Springer, Berlin, Heidelberg, 2010, p. 91.
|
[19] |
D.S. Milovanović, Interaction of Picosecond and Nanosecond Pulsed Laser Radiation on Ti6Al4V Alloy Surface[Dissertation], University of Belgrade, Belgrade, 2013.
|
[20] |
M.D. Momčilović, Interaction of Impulse TEA CO2 Laser Radiation with Copper Target: Spectroscopy of Plasma and Morhological Effects [Dissertation], University of Belgrade, Belgrade, 2014.
|
[21] |
D. Bäuerle, Laser Processing and Chemistry, 3rd ed., Springer, Berlin, Heidelberg, 2000.
|
[22] |
M. von Allmen, Laser-Beam Interaction with Materials: Physical Principles and Applications, A. Mooradian, ed., Springer Series in Materials Science, Vol. 2, Springer, Berlin, Heidelberg, 1987.
|
[23] |
K. Subramani and R.T. Mathew, Titanium surface modification techniques for dental implants—From microscale to nanoscale, [in] K. Subramani and W. Ahmed, eds., Emerging Nanotechnologies in Dentistry: Processes, Materials and Applications, Elsevier, Waltham, 2012, p. 85.
|
[24] |
B. Hitz, J.J. Ewing, and J. Hecht, Introduction to Laser Technology, 3rd ed., IEEE Press, New York, 2001.
|
[25] |
E. Carpene, D. Höche, and P. Schaaf, Fundamentals of laser–material interactions, [in] P. Schaaf, ed., Laser Processing of Materials: Fundamentals, Applications and Developments, Springer Series in Materials Science, Vol. 139, Springer, Berlin, Heidelberg, 2010, p. 21.
|
[26] |
G. Mani, Surface properties and characterization of metallic biomaterials, [in] C. Wen, ed., Surface Coating and Modification of Metallic Biomaterials, Woodhead Publishing, Cambridge, 2015, p. 61.
|
[27] |
D. Peruško, J. Kovač, S. Petrović, G. Dražić, M. Mitrić, M. Milosavljević, and J. Ciganović, Intermixing and phase transformations in Al/Ti multilayer system induced by picosecond laser beam, Thin Solid Films, 591(2015), p. 357. doi: 10.1016/j.tsf.2015.03.030
|
[28] |
M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm, Appl. Surf. Sci., 253(2006), No. 5, p. 2551. doi: 10.1016/j.apsusc.2006.05.024
|
[29] |
E. György, I.N. Mihailescu, P. Serra, A.P. del Pino, and J.L. Morenza, Single pulse Nd:YAG laser irradiation of titanium: Influence of laser intensity on surface morphology, Surf. Coat. Technol., 154(2002), No. 1, p. 63. doi: 10.1016/S0257-8972(01)01699-1
|
[30] |
D.S. Milovanović, S.M. Petrović, M.A. Shulepov, V.F. Tarasenko, B.B. Radak, Š.S. Miljanić, and M.S. Trtica, Titanium alloy surface modification by excimer laser irradiation, Opt. Laser Technol., 54(2013), p. 419. doi: 10.1016/j.optlastec.2013.06.025
|
[31] |
D.S. Milovanović, B.B. Radak, B.M. Gaković, D. Batani, M.D. Momčilović, and M.S. Trtica, Surface morphology modifications of titanium based implant induced by 40 picosecond laser pulses at 266 nm, J. Alloys Compd., 501(2010), No. 1, p. 89. doi: 10.1016/j.jallcom.2010.04.047
|
[32] |
M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum, Laser Part. Beams, 31(2013), No. 1, p. 29. doi: 10.1017/S0263034612000924
|
[33] |
J. Ciganovic, J. Stasic, B. Gakovic, M. Momcilovic, D. Milovanovic, M. Bokorov, and M. Trtica, Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres – Comparative study, Appl. Surf. Sci., 258(2012), No. 7, p. 2741. doi: 10.1016/j.apsusc.2011.10.125
|
[34] |
I. Gnilitskyi, M. Pogorielov, R. Viter, A.M. Ferraria, A.P. Carapeto, O. Oleshko, L. Orazi, and O. Mishchenko, Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures, Nanomed. Nanotechnol. Biol. Med., 21(2019), art. No. 102036. doi: 10.1016/j.nano.2019.102036
|
[35] |
H.E. Götz, M. Müller, A. Emmel, U. Holzwarth, R.G. Erben, and R. Stangl, Effect of surface finish on the osseointegration of laser-treated titanium alloy implants, Biomaterials, 25(2004), No. 18, p. 4057. doi: 10.1016/j.biomaterials.2003.11.002
|
[36] |
J.R. Zhang, Y.C. Guan, W.T. Lin, and X.N. Gu, Enhanced mechanical properties and biocompatibility of Mg–Gd–Ca alloy by laser surface processing, Surf. Coat. Technol., 362(2019), p. 176. doi: 10.1016/j.surfcoat.2019.01.063
|
[37] |
C.P. Ma, G. Peng, L. Nie, H.F. Liu, and Y.C. Guan, Laser surface modification of Mg–Gd–Ca alloy for corrosion resistance and biocompatibility enhancement, Appl. Surf. Sci., 445(2018), p. 211. doi: 10.1016/j.apsusc.2018.03.174
|
[38] |
L. Hao, J. Lawrence, and L. Li, Manipulation of the osteoblast response to a Ti–6Al–4V titanium alloy using a high power diode laser, Appl. Surf. Sci., 247(2005), No. 1-4, p. 602. doi: 10.1016/j.apsusc.2005.01.165
|
[39] |
H. Badekas, C. Panagopoulos, and S. Economou, Laser surface-treatment of titanium, J. Mater. Process. Technol., 44(1994), No. 1-2, p. 54. doi: 10.1016/0924-0136(94)90037-X
|
[40] |
M. Trtica, J. Stasic, D. Batani, R. Benocci, V. Narayanan, and J. Ciganovic, Laser-assisted surface modification of Ti-implant in air and water environment, Appl. Surf. Sci., 428(2018), p. 669. doi: 10.1016/j.apsusc.2017.09.185
|
[41] |
R. Singh, M. Martin, and N.B. Dahotre, Influence of laser surface modification on corrosion behavior of stainless steel 316L and Ti–6Al–4V in simulated biofluid, Surf. Eng., 21(2005), No. 4, p. 297. doi: 10.1179/174329405X55320
|
[42] |
T.M. Yue, J.K. Yu, Z. Mei, and H.C. Man, Excimer laser surface treatment of Ti–6Al–4V alloy for corrosion resistance enhancement, Mater. Lett., 52(2002), No. 3, p. 206. doi: 10.1016/S0167-577X(01)00395-0
|
[43] |
T.M. Yue, T.M. Cheung, and H.C. Man, The effects of laser surface treatment on the corrosion properties of Ti–6Al–4V alloy in Hank's solution, J. Mater. Sci. Lett., 19(2000), p. 205. doi: 10.1023/A:1006750422831
|
[44] |
C.W. Chan, S. Lee, G. Smith, G. Sarri, C.-H. Ng, A. Sharba, and H.-C. Man, Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen, Appl. Surf. Sci., 367(2016), p. 80. doi: 10.1016/j.apsusc.2016.01.091
|
[45] |
S. Sathish, M. Geetha, N.D. Pandey, C. Richard, and R. Asokamani, Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys, Mater. Sci. Eng. C, 30(2010), No. 3, p. 376. doi: 10.1016/j.msec.2009.12.004
|
[46] |
J. Ciganović, Action of Pulsed Lasers on Titanium Target: Surface Effects [Dissertation], University of Belgrade, Belgrade, 2019.
|
[47] |
M. Geetha, A.K. Singh, K. Muraleedharan, A.K. Gogia, and R. Asokamani, Effect of thermomechanical processing on microstructure of a Ti–13Nb–13Zr alloy, J. Alloys Compd., 329(2001), No. 1-2, p. 264. doi: 10.1016/S0925-8388(01)01604-8
|
[48] |
J.A. Davidson, A.K. Mishra, P. Kovacs, and R.A. Poggie, New surface-hardened, low-modulus, corrosion-resistant Ti–13Nb–13Zr alloy for total hip arthroplasty, Bio-Med. Mater. Eng., 4(1994), No. 3, p. 231. doi: 10.3233/BME-1994-4310
|
[49] |
C.A.R.P. Baptista, S.G. Schneider, E.B. Taddei, and H.M. da Silva, Fatigue behavior of arc melted Ti–13Nb–13Zr alloy, Int. J. Fatigue, 26(2004), No. 9, p. 967. doi: 10.1016/j.ijfatigue.2004.01.011
|
[50] |
A. Robin, O.A.S. Carvalho, S.G. Schneider, and S. Schneider, Corrosion behavior of Ti–xNb–13Zr alloys in Ringer’s solution, Mater. Corros., 59(2008), No. 12, p. 929. doi: 10.1002/maco.200805014
|
[51] |
J. Ciganovic, S. Zivkovic, M. Momcilovic, J. Savovic, M. Kuzmanovic, M. Stoiljkovic, and M. Trtica, Laser-induced features at titanium implant surface in vacuum ambience, Opt. Quantum Electron., 48(2016), art. No. 133. doi: 10.1007/s11082-015-0369-x
|
[52] |
C.R. Brooks, Heat Treatment: Structure and Properties of Nonferrous Alloys, American Society for Metals, Ohio, 1982.
|