Yong-fa Zhu, Wu-bian Tian, Dan-dan Wang, Heng Zhang, Jian-xiang Ding, Pei-gen Zhang, and Zheng-ming Sun, Fabrication and properties of silver-based composites reinforced with carbon-coated Ti3AlC2, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp.1836-1843. https://dx.doi.org/10.1007/s12613-020-2064-6
Cite this article as: Yong-fa Zhu, Wu-bian Tian, Dan-dan Wang, Heng Zhang, Jian-xiang Ding, Pei-gen Zhang, and Zheng-ming Sun, Fabrication and properties of silver-based composites reinforced with carbon-coated Ti3AlC2, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp.1836-1843. https://dx.doi.org/10.1007/s12613-020-2064-6

Fabrication and properties of silver-based composites reinforced with carbon-coated Ti3AlC2

  • Ti3AlC2-reinforced Ag-based composites, which are used as sliding current collectors, electrical contacts, and electrode materials, exhibit remarkable performances. However, the interfacial reactions between Ag and Ti3AlC2 significantly degrade the electrical and thermal properties of these composites. To diminish these interfacial reactions, we fabricated carbon-coated Ti3AlC2 particles (C@Ti3AlC2) as reinforcement and prepared Ag–10wt%C@Ti3AlC2 composites with carbon-layer thicknesses ranging from 50–200 nm. Compared with the uncoated Ag–Ti3AlC2 composite, Ag–C@Ti3AlC2 was found to have a better distribution of Ti3AlC2 particles. With increases in the carbon-layer thickness, the Vickers hardness value and relative density of Ag–C@Ti3AlC2 gradually decreases. With a carbon-layer thickness of 150 nm, we obtained the lowest resistivity of Ag–C@Ti3AlC2 of 29.4 135.5×10−9 Ω·m, which is half that of Ag–Ti3AlC2 (66.7 × 10−9 Ω·m). The thermal conductivity of Ag–C@Ti3AlC2 reached a maximum value of 135.5 W·m−1·K−1 with a 200-nm carbon coating (~1.8 times that of Ag–Ti3AlC2). These results indicate that the carbon-coating method is a feasible strategy for improving the performance of Ag–C@Ti3AlC2 composites.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return