Franco Mayanglambam and Mark Russell, Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni–P/fly ash and Ni–P/SiO2–Al2O3), Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1147-1156. https://doi.org/10.1007/s12613-020-2071-7
Cite this article as:
Franco Mayanglambam and Mark Russell, Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni–P/fly ash and Ni–P/SiO2–Al2O3), Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1147-1156. https://doi.org/10.1007/s12613-020-2071-7
Research Article

Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni–P/fly ash and Ni–P/SiO2–Al2O3)

+ Author Affiliations
  • Corresponding author:

    Franco Mayanglambam    E-mail: fmayanglambam01@qub.ac.uk

  • Received: 5 January 2020Revised: 3 April 2020Accepted: 15 April 2020Available online: 16 April 2020
  • Recycling and reusing materials from waste have become a nexus in the development of sustainable materials, leading to more balanced technologies. In this study, we developed a composite coating by co-depositing recycled ceramic particles, pulverised fly ash (PFA) and medical ceramics (MC), into a nickel–phosphorus matrix using a typical electroless plating process. Scanning electron microscopy (SEM) images indicated well-dispersed particles in the Ni–P matrix. However, compared with the MC particles, the PFA particles were distributed scantily with a lower content in the matrix, which could be due to the less impingement effect during the co-deposition. A modified microstructure with refined grains was obtained for the PFA-incorporated composite coating, as seen in the SEM micrograph. The X-ray diffraction result of the MC-incorporated composite coating showed the formation of NixSiy phases in addition to the typical Ni3P phases for the heat-treated electroless Ni–P coatings. Upon heat treatment, the PFA-reinforced composite coating, due to a modified microstructure, exhibited a higher microhardness up to HK0.05 818, which is comparable to that of the traditional SiC particle-embedded composite coating (HK0.05 825). The findings can potentially open up a new strategy to further advance the green approach for industrial surface engineering.
  • loading
  • [1]
    I. Apachitei, F.D. Tichelaar, J. Duszczyk, and L. Katgerman, Solid-state reactions in low-phosphorus autocatalytic NiP–SiC coatings, Surf. Coat. Technol., 148(2001), No. 2-3, p. 284. doi: 10.1016/S0257-8972(01)01337-8
    [2]
    P. Makkar, R.C. Agarwala, and V. Agarwala, Chemical synthesis of TiO2 nanoparticles and their inclusion in Ni–P electroless coatings, Ceram. Int., 39(2013), No. 8, p. 9003. doi: 10.1016/j.ceramint.2013.04.101
    [3]
    N.K. Shrestha, D.B. Hamal, and T. Saji, Composite plating of Ni–P–Al2O3 in two steps and its anti-wear performance, Surf. Coat. Technol., 183(2004), No. 2-3, p. 247. doi: 10.1016/j.surfcoat.2003.08.085
    [4]
    D. Dong, X.H. Chen, W.T. Xiao, G.B. Yang, and P.Y. Zhang, Preparation and properties of electroless Ni–P–SiO2 composite coatings, Appl. Surf. Sci., 255(2009), No. 15, p. 7051. doi: 10.1016/j.apsusc.2009.03.039
    [5]
    S.R. Ardakani, A. Afshar, S. Sadreddini, and A.A. Ghanbari, Characterization of Ni–P–SiO2–Al2O3 nano-composite coatings on aluminum substrate, Mater. Chem. Phys., 189(2017), p. 207. doi: 10.1016/j.matchemphys.2016.12.023
    [6]
    Y. de Hazan, D. Zimmermann, M. Z'graggen, S. Roos, C. Aneziris, H. Bollier, P. Fehr, and T. Graule, Homogeneous electroless Ni–P/SiO2 nanocomposite coatings with improved wear resistance and modified wear behaviour, Surf. Coat. Technol., 204(2010), No. 21-22, p. 3464. doi: 10.1016/j.surfcoat.2010.04.007
    [7]
    S. Karthikeyan and B. Ramamoorthy, Effect of reducing agent and nano Al2O3 particles on the properties of electroless Ni–P coating, Appl. Surf. Sci., 307(2014), p. 654. doi: 10.1016/j.apsusc.2014.04.092
    [8]
    J.N. Balaraju, T.S.N. Sankara Narayanan, and S.K. Seshadri, Electroless Ni–P composite coatings, J. Appl. Electrochem., 33(2003), No. 9, p. 807. doi: 10.1023/A:1025572410205
    [9]
    J. Sudagar, J.S. Lian, and W. Sha, Electroless nickel, alloy, composite and nano coatings – A critical review, J. Alloys Compd., 571(2013), p. 183. doi: 10.1016/j.jallcom.2013.03.107
    [10]
    R.C. Agarwala and V. Agarwala, Electroless alloy/composite coatings: A review, Sadhana, 28(2003), p. 475. doi: 10.1007/BF02706445
    [11]
    J.N. Balaraju, Kalavati, and K.S. Rajam, Influence of particle size on the microstructure, hardness and corrosion resistance of electroless N–P–Al2O3 composite coatings, Surf. Coat. Technol., 200(2006), No. 12-13, p. 3933. doi: 10.1016/j.surfcoat.2005.03.007
    [12]
    S. Alirezaei, S.M. Monirvaghefi, M. Salehi, and A. Saatchi, Effect of alumina content on surface morphology and hardness of Ni–P–Al2O3(α) electroless composite coatings, Surf. Coat. Technol., 184(2004), No. 2-3, p. 170. doi: 10.1016/j.surfcoat.2003.11.013
    [13]
    S. Alirezaei, S.M. Monirvaghefi, M. Salehi, and A. Saatchi, Wear behavior of Ni–P and Ni–P–Al2O3 electroless coatings, Wear, 262(2007), No. 7-8, p. 978. doi: 10.1016/j.wear.2006.10.013
    [14]
    M. Novák, D. Vojtěch, and T. Vítů, Influence of heat treatment on tribological properties of electroless Ni–P and Ni–P–Al2O3 coatings on Al–Si casting alloy, Appl. Surf. Sci., 256(2010), No. 9, p. 2956. doi: 10.1016/j.apsusc.2009.11.057
    [15]
    A. Mondon, M.N. Jawaid, J. Bartsch, M. Glatthaar, and S.W. Glunz, Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel–copper contacts on silicon solar cells, Sol. Energy Mater. Sol. Cells, 117(2013), p. 209. doi: 10.1016/j.solmat.2013.06.005
    [16]
    C.M. Liu, W.L. Liu, S.H. Hsieh, T.K. Tsai, and W.J. Chen, Interfacial reactions of electroless nickel thin films on silicon, Appl. Surf. Sci., 243(2005), No. 1-4, p. 259. doi: 10.1016/j.apsusc.2004.09.110
    [17]
    A. Duhin, Y. Sverdlov, I. Torchinsky, Y. Feldman, and Y. Shacham-Diamand, NiSi contact metallization using electroless Ni deposition on Pd-activated self-assembled monolayer (SAM) on p-type Si(1 0 0), Microelectron. Eng., 84(2007), No. 11, p. 2506. doi: 10.1016/j.mee.2007.05.067
    [18]
    I. Apachitei, J. Duszczyk, L. Katgerman, and P.J.B. Overkamp, Electroless Ni–P composite coatings: The effect of heat treatment on the microhardness of substrate and coating, Scripta Mater., 38(1998), No. 9, p. 1347. doi: 10.1016/S1359-6462(98)00054-2
    [19]
    C.N. Panagopoulos and E.P. Georgiou, Surface mechanical behaviour of composite Ni–P–fly ash/zincate coated aluminium alloy, Appl. Surf. Sci., 255(2009), No. 13-14, p. 6499. doi: 10.1016/j.apsusc.2009.02.026
    [20]
    M.S. Jagatheeshwaran, A. Elayaperumal, and S. Arulvel, Impact of nano zinc oxide on the friction–wear property of electroless nickel–phosphorus sea shell composite coatings, Mater. Sci. Eng. B, 225(2017), p. 160. doi: 10.1016/j.mseb.2017.08.026
    [21]
    M. Franco, W. Sha, S. Malinov, and R. Rajendran, Phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on cast aluminium LM24 alloy substrate, Surf. Coat. Technol., 235(2013), p. 755. doi: 10.1016/j.surfcoat.2013.08.063
    [22]
    M. Franco, W. Sha, S. Malinov, and H. Liu, Micro-scale wear characteristics of electroless Ni–P/SiC composite coating under two different sliding conditions, Wear, 317(2014), No. 1-2, p. 254. doi: 10.1016/j.wear.2014.06.013
    [23]
    M. Franco, W. Sha, V. Tan, and S. Malinov, Insight of the interface of electroless Ni–P/SiC composite coating on aluminium alloy, LM24, Mater. Des., 85(2015), p. 248. doi: 10.1016/j.matdes.2015.06.159
    [24]
    I. Apachitei, J. Duszczyk, L. Katgerman, and P.J.B. Overkamp, Particles co-deposition by electroless nickel, Scripta Mater., 38(1998), No. 9, p. 1383. doi: 10.1016/S1359-6462(98)00053-0
    [25]
    Z.X. Ping, Y.D. He, C.D. Gu, and T.Y. Zhang, Mechanically assisted electroplating of Ni–P coatings on carbon steel, Surf. Coat. Technol., 202(2008), No. 24, p. 6023. doi: 10.1016/j.surfcoat.2008.06.183
    [26]
    Z.X. Ping, G.A. Cheng, and Y.D. He, Mechanically assisted electroless barrel-plating Ni–P coatings deposited on carbon steel, J. Mater. Sci. Technol., 26(2010), No. 10, p. 945. doi: 10.1016/S1005-0302(10)60153-3
    [27]
    X.W. Zhou, Y.F. Shen, H.M. Jin, and Y.Y. Zheng, Microstructure and depositional mechanism of Ni–P coatings with nano-ceria particles by pulse electrodeposition, Trans. Nonferrous Met. Soc. China, 22(2012), No. 8, p. 1981. doi: 10.1016/S1003-6326(11)61417-9
    [28]
    J.N. Balaraju and K.S. Rajam, Electroless deposition of N–Cu–P, Ni–W–P and Ni–W–Cu–P alloys, Surf. Coat. Technol., 195(2005), No. 2-3, p. 154. doi: 10.1016/j.surfcoat.2004.07.068
    [29]
    I. Apachitei, F.D. Tichelaar, J. Duszczyk, and L. Katgerman, The effect of heat treatment on the structure and abrasive wear resistance of autocatalytic NiP and NiP–SiC coatings, Surf. Coat. Technol., 149(2002), No. 2-3, p. 263. doi: 10.1016/S0257-8972(01)01492-X
    [30]
    T. Hentschel, D. Isheim, R. Kirchheim, F. Müller, and H. Kreye, Nanocrystalline Ni–3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy, Acta Mater., 48(2000), No. 4, p. 933. doi: 10.1016/S1359-6454(99)00371-7
    [31]
    A. Farzaneh, M. Mohammadi, M. Ehteshamzadeh, and F. Mohammadi, Electrochemical and structural properties of electroless Ni–P–SiC nanocomposite coatings, Appl. Surf. Sci., 276(2013), p. 697. doi: 10.1016/j.apsusc.2013.03.156
    [32]
    J.Q. Gao, L. Liu, Y.T. Wu, B. Shen, and W.B. Hu, Electroless Ni–P–SiC composite coatings with superfine particles, Surf. Coat. Technol., 200(2006), No. 20-21, p. 5836. doi: 10.1016/j.surfcoat.2005.08.134
    [33]
    C.K. Chen, H.M. Feng, H.C. Lin, and M.H. Hon, The effect of heat treatment on the microstructure of electroless Ni–P coatings containing SiC particles, Thin Solid Films, 416(2002), No. 1-2, p. 31. doi: 10.1016/S0040-6090(02)00628-4
    [34]
    M. Franco, W. Sha, G. Aldic, S. Malinov, and H. Çimenoğlu, Effect of reinforcement and heat treatment on elevated temperature sliding of electroless Ni–P/SiC composite coatings, Tribol. Int., 97(2016), p. 265. doi: 10.1016/j.triboint.2016.01.047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Share Article

    Article Metrics

    Article views (853) PDF downloads(6) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return