Tan Shang, Xian-kang Zhong, Chen-feng Zhang, Jun-ying Hu, and Bálint Medgyes, Erosion-corrosion and its mitigation on the internal surface of the expansion segment of N80 steel tube, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 98-110. https://doi.org/10.1007/s12613-020-2086-0
Cite this article as:
Tan Shang, Xian-kang Zhong, Chen-feng Zhang, Jun-ying Hu, and Bálint Medgyes, Erosion-corrosion and its mitigation on the internal surface of the expansion segment of N80 steel tube, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 98-110. https://doi.org/10.1007/s12613-020-2086-0
Research Article

Erosion-corrosion and its mitigation on the internal surface of the expansion segment of N80 steel tube

+ Author Affiliations
  • Corresponding author:

    Xian-kang Zhong    E-mail: zhongxk@swpu.edu.cn

  • Received: 25 February 2020Revised: 6 May 2020Accepted: 7 May 2020Available online: 9 May 2020
  • We investigated erosion-corrosion (E-C) and its mitigation on the internal surface of the expansion segment of N80 steel tube in a loop system using array electrode technique, weight-loss measurement, computational-fluid-dynamics simulation, and surface characterization techniques. The results show that high E-C rates can occur at locations where there is a high flow velocity and/or a strong impact from sand particles, which results in different E-C rates at various locations. Consequently, it can be expected that localized corrosion often occurs in such segments. The E-C rate at each location in the expansion segment can be significantly mitigated with an imidazoline derivative inhibitor, as the resulting inhibitor layer significantly impedes the electrochemical reaction rate. However, we found that this inhibitor layer could not effectively reduce the difference in the erosion rates at different locations on the internal surface of the expansion segment. This means that localized corrosion can still occur at the expansion segment despite the presence of the inhibitor.

  • loading
  • [1]
    G.J. Yuan, Z.Q. Yao, Q.H. Wang, and Z.T. Tang, Numerical and experimental distribution of temperature and stress fields in API round threaded connection, Eng. Fail. Anal., 13(2006), No. 8, p. 1275. doi: 10.1016/j.engfailanal.2005.11.006
    [2]
    W. Li, B.F.M. Pots, X.K. Zhong, and S. Nesic, Inhibition of CO2 corrosion of mild steel – Study of mechanical effects of highly turbulent disturbed flow, Corros. Sci., 126(2017), p. 208. doi: 10.1016/j.corsci.2017.07.003
    [3]
    S. Anupriya and S. Jayanti, Study of gas-liquid upward annular flow through a contraction, Ann. Nucl. Energy, 129(2019), p. 169. doi: 10.1016/j.anucene.2019.01.051
    [4]
    P. Madasamy, T.V. Krishna Mohan, A. Sylvanus, E. Natarajan, H.P. Rani, and S. Velmurugan, Hydrodynamic effects on flow accelerated corrosion at 120°C and neutral pH conditions, Eng. Fail. Anal., 94(2018), p. 458. doi: 10.1016/j.engfailanal.2018.08.021
    [5]
    M.M. Stack and G.H. Abdulrahman, Mapping erosion–corrosion of carbon steel in oil–water solutions: Effects of velocity and applied potential, Wear, 274-275(2012), p. 401. doi: 10.1016/j.wear.2011.10.008
    [6]
    G.T. Burstein and K. Sasaki, Detecting electrochemical transients generated by erosion–corrosion, Electrochim. Acta, 46(2001), No. 24-25, p. 3675. doi: 10.1016/S0013-4686(01)00646-6
    [7]
    R.C. Barik, J.A. Wharton, R.J.K. Wood, and K.R. Stokes, Electro-mechanical interactions during erosion–corrosion, Wear, 267(2009), p. 1900. doi: 10.1016/j.wear.2009.03.011
    [8]
    X. Jiang, Y.G. Zheng, and W. Ke, Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution, Corros. Sci., 47(2005), No. 11, p. 2636. doi: 10.1016/j.corsci.2004.11.012
    [9]
    R. Oltra, B. Chapey, and L. Renaud, Abrasion-corrosion studies of passive stainless steels in acidic media: Combination of acoustic emission and electrochemical techniques, Wear, 186-187(1995), p. 533. doi: 10.1016/0043-1648(95)07170-9
    [10]
    L. Zeng, G.A. Zhang, and X.P. Guo, Erosion–corrosion at different locations of X65 carbon steel elbow, Corros. Sci., 85(2014), p. 318. doi: 10.1016/j.corsci.2014.04.045
    [11]
    M.A. Islam, Z.N. Farhat, E.M. Ahmed, and A.M. Alfantazi, Erosion enhanced corrosion and corrosion enhanced erosion of API X-70 pipeline steel, Wear, 302(2013), No. 1-2, p. 1592. doi: 10.1016/j.wear.2013.01.041
    [12]
    H.X. Guo, B.T. Lu, and J.L. Luo, Interaction of mechanical and electrochemical factors in erosion–corrosion of carbon steel, Electrochim. Acta, 51(2005), No. 2, p. 315. doi: 10.1016/j.electacta.2005.04.032
    [13]
    L. Chaal, B. Albinet, C. Deslouis, Y.T. Al-Janabi, A. Pailleret, B. Saidani, and G. Schmitt, Wall shear stress mapping in the rotating cage geometry and evaluation of drag reduction efficiency using an electrochemical method, Corros. Sci., 51(2009), No. 8, p. 1809. doi: 10.1016/j.corsci.2009.05.013
    [14]
    B.T. Lu, J.F. Lu, and J.L. Luo, Erosion–corrosion of carbon steel in simulated tailing slurries, Corros. Sci., 53(2011), No. 3, p. 1000. doi: 10.1016/j.corsci.2010.11.034
    [15]
    J. Postlethwaite, Effect of chromate inhibitor on the mechanical and electrochemical components of erosion-corrosion in aqueous slurries of sand, Corrosion, 37(1981), No. 1, p. 1. doi: 10.5006/1.3593833
    [16]
    J. Postlethwaite, E.B. Tinker, and M.W. Hawrylak, Erosion-corrosion in slurry pipelines, Corrosion, 30(1974), No. 8, p. 285. doi: 10.5006/0010-9312-30.8.285
    [17]
    J. Postlethwaite, M.H. Dobbin, and K. Bergevin, The role of oxygen mass transfer in the erosion-corrosion of slurry pipelines, Corrosion, 42(1986), p. 514. doi: 10.5006/1.3583060
    [18]
    J. Postlethwaite and U. Lotz, Mass transfer at erosion-corrosion roughened surfaces, Can. J. Chem. Eng., 66(1988), No. 1, p. 75. doi: 10.1002/cjce.5450660111
    [19]
    J. Postlethwaite, S. Nešić, G. Adamopoulos, and D.J. Bergstrom, Predictive model for erosion-corrosion under disturbed flow conditions, Corros. Sci., 35(1993), No. 1-4, p. 627. doi: 10.1016/0010-938X(93)90197-O
    [20]
    S. Nesic and J. Postlethwaite, Relationship between the structure of disturbed flow and erosion-corrosion, Corrosion, 46(1990), No. 11, p. 874. doi: 10.5006/1.3580852
    [21]
    R. Malka, S. Nešić, and D.A. Gulino, Erosion−corrosion and synergistic effects in disturbed liquid-particle flow, Wear, 262(2007), No. 7-8, p. 791. doi: 10.1016/j.wear.2006.08.029
    [22]
    S.S. Rajahram, T.J. Harvey, and R.J.K. Wood, Erosion–corrosion resistance of engineering materials in various test conditions, Wear, 267(2009), No. 1-4, p. 244. doi: 10.1016/j.wear.2009.01.052
    [23]
    A. Neville, T. Hodgkiess, and J.T. Dallas, A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications, Wear, 186-187(1995), p. 497. doi: 10.1016/0043-1648(95)07145-8
    [24]
    G.A. Zhang, L.Y. Xu, and Y.F. Cheng, Investigation of erosion–corrosion of 3003 aluminum alloy in ethylene glycol–water solution by impingement jet system, Corros. Sci., 51(2009), No. 2, p. 283. doi: 10.1016/j.corsci.2008.10.026
    [25]
    V. Hadavi, N.H. Arani, and M. Papini, Numerical and experimental investigations of particle embedment during the incubation period in the solid particle erosion of ductile materials, Tribol. Int., 129(2019), p. 38. doi: 10.1016/j.triboint.2018.08.013
    [26]
    H.K. Wang, Y. Yu, J.X. Yu, Z.Y. Wang, and H.D. Li, Development of erosion equation and numerical simulation methods with the consideration of applied stress, Tribol. Int., 137(2019), p. 387. doi: 10.1016/j.triboint.2019.05.019
    [27]
    L. Zeng, G.A. Zhang, X.P. Guo, and C.W. Chai, Inhibition effect of thioureidoimidazoline inhibitor for the flow accelerated corrosion of an elbow, Corros. Sci., 90(2015), p. 202. doi: 10.1016/j.corsci.2014.10.011
    [28]
    L. Zeng, X.P. Guo, and G.A. Zhang, Inhibition of the erosion-corrosion of a 90° low alloy steel bend, J. Alloys Compd., 724(2017), p. 827. doi: 10.1016/j.jallcom.2017.07.083
    [29]
    X.K. Zhong, T. Shang, C.F. Zhang, J.Y. Hu, Z. Zhang, Q. Zhang, X. Yuan, D. Hou, D.Z. Zeng, and T.H. Shi, In situ study of flow accelerated corrosion and its mitigation at different locations of a gradual contraction of N80 steel, J. Alloys Compd., 824(2020), art. No. 153947. doi: 10.1016/j.jallcom.2020.153947
    [30]
    G.A. Zhang, L. Zeng, H.L. Huang, and X.P. Guo, A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation, Corros. Sci., 77(2013), p. 334. doi: 10.1016/j.corsci.2013.08.022
    [31]
    S.G. Clarke, The use of inhibitors (with special reference to antimony) in the selective removal of metallic coatings and rust, J. Electrochem. Soc., 69(1936), No. 1, p. 131. doi: 10.1149/1.3498150
    [32]
    J.K. Edwards, B.S. Mclaury, and S.A. Shirazi, Evaluation of alternative pipe bend fitting in erosive service, [in] Proceedings of ASME FEDSM00: Fluids Engineering Division Summer Meeting, Boston, 2000.
    [33]
    G.A. Zhang and Y.F. Cheng, Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution, Corros. Sci., 51(2009), No. 8, p. 1714. doi: 10.1016/j.corsci.2009.04.030
    [34]
    G.A. Zhang and Y.F. Cheng, On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production, Corros. Sci., 51(2009), No. 1, p. 87. doi: 10.1016/j.corsci.2008.10.013
    [35]
    G.J. Brug, A.L.G. van Den Eeden, M. Sluyters-Rehbach, and J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, J. Electroanal. Chem. Interfacial Electrochem., 176(1984), No. 1-2, p. 275. doi: 10.1016/S0022-0728(84)80324-1
    [36]
    W. Li, B. Brown, D. Young, and S. Nesic, Investigation of pseudo-passivation of mild steel in CO2 corrosion, Corrosion, 70(2014), p. 294. doi: 10.5006/0950
    [37]
    D.A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1996.
    [38]
    S. Lu, J. Xiang, Y.J. Kang, Z.L. Chang, X.C. Dong and T.G. Zhai, Premium connection downhole tubing corrosion, Mater. Performance, 47(2008), No. 5, p. 66.
    [39]
    T.M. Redlinger, P.S. Griggs, and S. Bergo, Comprehensive review of damages and repairs on drill pipe connections, [in] IADC/SPE Drilling Conference and Exhibition, San Diego, California, 2012, art. No. SPE-151253-MS.
    [40]
    X.K. Zhong, W.J. Lu, H.J. Yang, M. Liu, Y. Zhang, H.W. Liu, J.Y. Hu, Z. Zhang, and D.Z. Zeng, Oxygen corrosion of N80 steel under laboratory conditions simulating high pressure air injection: Analysis of corrosion products, J. Pet. Sci. Technol., 172(2019), p. 162.
    [41]
    Z.X. Yu, Y.C. Liu, L.Y. Liang, L.Y. Shao, X.H. Li, H.J. Zeng, X.F. Feng, and K.Y. Cao, Inhibition performance of a multi-sites adsorption type corrosion inhibitor on P110 steel in acidic medium, Chem. Phys. Lett., 735(2019), No. 16, art. No. 136773.
    [42]
    N. Ochoa, F. Moran, N. Pébère, and B. Tribollet, Influence of flow on the corrosion inhibition of carbon steel by fatty amines in association with phosphonocarboxylic acid salts, Corros. Sci., 47(2005), No. 3, p. 593. doi: 10.1016/j.corsci.2004.07.021
    [43]
    X.Y. Liu, S.H. Chen, H.Y. Ma, G.Z. Liu, and L.X. Shen, Protection of iron corrosion by stearic acid and stearic imidazoline self-assembled monolayers, Appl. Surf. Sci., 253(2006), No. 2, p. 814. doi: 10.1016/j.apsusc.2006.01.038
    [44]
    J.K. Heuer and J.F. Stubbins, An XPS characterization of FeCO3 films from CO2 corrosion, Corros. Sci., 41(1999), No. 7, p. 1231. doi: 10.1016/S0010-938X(98)00180-2
    [45]
    M. Finšgar and J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review, Corros. Sci., 86(2014), p. 17. doi: 10.1016/j.corsci.2014.04.044
    [46]
    M. Askari, M. Aliofkhazraei, S. Ghaffari, and A. Hajizadeh, Film former corrosion inhibitors for oil and gas pipelines – A technical review, J. Nat. Gas Sci. Eng., 58(2018), p. 92. doi: 10.1016/j.jngse.2018.07.025
    [47]
    A.A. Olajire, Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors – A review, J. Mol. Liq., 248(2017), p. 775. doi: 10.1016/j.molliq.2017.10.097
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(2077) PDF Downloads(35) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return