Cite this article as: |
Xiao-man Tian, Shen-xu Bao, and Yi-min Zhang, Adsorption properties of V(IV) on resin-activated carbon composite electrodes in capacitive deionization, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1777-1787. https://doi.org/10.1007/s12613-020-2100-6 |
Shen-xu Bao E-mail: sxbao@whut.edu.cn
Composite electrodes prepared by cation exchange resins and activated carbon (AC) were used to adsorb V(IV) in capacitive deionization (CDI). The electrode made of middle resin size (D860/AC M) had the largest specific surface area and mesoporous content than two other composite electrodes. Electrochemical analysis showed that D860/AC M presents higher specific capacitance and electrical double layer capacitor than the others, and significantly lower internal diffusion impedance. Thus, D860/AC M exhibits the highest adsorption capacity and rate of V(IV) among three electrodes. The intra-particle diffusion model fits well in the initial adsorption stage, while the liquid film diffusion model is more suitable for fitting at the later stage. The pseudo-second-order kinetic model is suited for the entire adsorption process. The adsorption of V(IV) on the composite electrode follows that of the Freundlich isotherm. Thermodynamic analysis indicates that the adsorption of V(IV) is an exothermic process with entropy reduction, and the electric field force plays a dominant role in the CDI process. This work aims to improve our understanding of the ion adsorption behaviors and mechanisms on the composite electrodes in CDI.
[1] |
M.T. Li, C. Wei, G. Fan, H.L. Wu, C.X. Li, and X.B. Li, Acid leaching of black shale for the extraction of vanadium, Int. J. Miner. Process., 95(2010), No. 1-4, p. 62. doi: 10.1016/j.minpro.2010.04.002
|
[2] |
Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116. doi: 10.1016/j.hydromet.2011.06.002
|
[3] |
B. Chen, S.X. Bao, Y.M. Zhang, and S. Li, A high-efficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound, Sep. Purif. Technol., 240(2020), art. No. 116624. doi: 10.1016/j.seppur.2020.116624
|
[4] |
B. Chen, S.X. Bao, and Y.M. Zhang, Column separation of vanadium(v) from complex sulfuric solution using trialkylamine-impregnated resins, JOM, 72(2020), No. 2, p. 953. doi: 10.1007/s11837-019-03944-4
|
[5] |
R. Navarro, J. Guzman, I. Saucedo, J. Revilla, and E. Guibal, Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes, Waste Manag., 27(2006), No. 3, p. 425.
|
[6] |
Y.P. Luo, S.X. Bao, and Y.M. Zhang, Preparation of one-part geopolymeric precursors using vanadium tailing by thermal activation, J. Am. Ceramic. Soc., 103(2020), No. 2, p. 779. doi: 10.1111/jace.16835
|
[7] |
B. Chen, S.X. Bao, and Y.M. Zhang, Synergetic strengthening mechanism of ultrasound combined with calcium fluoride towards vanadium extraction from low-grade vanadium-bearing shale, Int. J. Min. Sci. Technol. (2021). DOI: 10.1016/j.ijmst.2021.07.008
|
[8] |
W. Li, Y.M. Zhang, T. Liu, J. Huang, and Y. Wang, Effect of impurities on vanadium purification from acid leaching solution of stone coal with solvent extraction process, Nonferrous Met. Extr. Metall., 2013, No. 5, p. 27.
|
[9] |
L. Liang, S.X. Bao, Y.M. Zhang, and Y.P. Tang, Separation and recovery of V(IV) from sulfuric acid solutions containing Fe(III) and Al(III) using bis(2-ethylhexyl)phosphoric acid impregnated resin, Chem. Eng. Res. Des., 111(2016), p. 109. doi: 10.1016/j.cherd.2016.04.019
|
[10] |
Y.P. Tang, S.X. Bao, Y.M. Zhang, and L. Liang, Effect of support properties on preparation process and adsorption performances of solvent impregnated resins, React. Funct. Polym., 113(2017), p. 50. doi: 10.1016/j.reactfunctpolym.2017.02.006
|
[11] |
Z.H. Huang, Z.Y. Yang, F.Y. Kang, and M. Inagaki, Carbon electrodes for capacitive deionization, J. Mater. Chem. A, 5(2017), No. 2, p. 470. doi: 10.1039/C6TA06733F
|
[12] |
C.Y. Zhang, D. He, J.X. Ma, W.W. Tang, and T.D. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review, Water Res., 128(2018), p. 314. doi: 10.1016/j.watres.2017.10.024
|
[13] |
Y. Oren, Capacitive deionization (CDI) for desalination and water treatment — Past, present and future (a review), Desalination, 228(2008), No. 1-3, p. 10. doi: 10.1016/j.desal.2007.08.005
|
[14] |
K.B. Hatzell, E. Iwama, A. Ferrs, B. Daffos, K. Urita, T. Tzedakis, F. Chauvet, P.L. Taberna, Y. Gogotsi, and P. Simon, Capacitive deionization concept based on suspension electrodes without ion exchange membranes, Electrochem. Commun., 43(2014), p. 18. doi: 10.1016/j.elecom.2014.03.003
|
[15] |
J.Y. Zhou, Y.M. Zhang, and S.X. Bao, Preparation and selective adsorption property of the ion-exchange resin/carbon composite electrode, Ind. Saf. Environ. Prot., 42(2016), No. 12, p. 51.
|
[16] |
Y.J. Kim and J.H. Choi, Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization, Water Res., 46(2012), No. 18, p. 6033. doi: 10.1016/j.watres.2012.08.031
|
[17] |
D.H. Lee, T. Ryu, J. Shin, J.C. Ryu, K.S. Chung, and Y.H. Kim, Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system, Hydrometallurgy, 173(2017), p. 283. doi: 10.1016/j.hydromet.2017.09.005
|
[18] |
J.H. Yeo and J.H. Choi, Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode, Desalination, 320(2013), p. 10. doi: 10.1016/j.desal.2013.04.013
|
[19] |
Y.Y. Cui, S.X. Bao, Y.M. Zhang, and J.H. Duan, Adsorption characteristics of vanadium on different resin-active carbon composite electrodes in capacitive deionization, Chemosphere, 212(2018), p. 34. doi: 10.1016/j.chemosphere.2018.07.175
|
[20] |
J.H. Duan, S.X. Bao, and Y.M. Zhang, The characteristics of resin/carbon composite electrode and application in selective adsorption of vanadium(IV) by capacitive deionization, Chem. Eng. Res. Des., 132(2018), p. 178. doi: 10.1016/j.cherd.2018.01.021
|
[21] |
S.X. Bao, J.H. Duan, and Y.M. Zhang, Recovery of V(V) from complex vanadium solution using capacitive deionization (CDI) with resin/carbon composite electrode, Chemosphere, 208(2018), p. 14. doi: 10.1016/j.chemosphere.2018.05.149
|
[22] |
J. Villarroel-Rocha, D. Barera, and K. Sapag, Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination, Microporous Mesoporous Mater., 200(2014), p. 68. doi: 10.1016/j.micromeso.2014.08.017
|
[23] |
H. Yuh-shan, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59(2004), No. 1, p. 171. doi: 10.1023/B:SCIE.0000013305.99473.cf
|
[24] |
P.J. Lin, J.J. Wu, J.M. Ahn, and J. Lee, Adsorption characteristics of Cd(II) and Ni(II) from aqueous solution using succinylated hay, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1239. doi: 10.1007/s12613-019-1832-7
|
[25] |
N. Öztürk and T.E. Köse, A kinetic study of nitrite adsorption onto sepiolite and powdered activated carbon, Desalination, 223(2008), No. 1-3, p. 174. doi: 10.1016/j.desal.2007.01.209
|
[26] |
Y.S. Ho and G. Mckay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76(1998), No. 4, p. 332. doi: 10.1205/095758298529696
|
[27] |
A. Sari, M. Tuzen, D. Citak, and M. Soylak, Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay, J. Hazard. Mater., 149(2007), No. 2, p. 283. doi: 10.1016/j.jhazmat.2007.03.078
|
[28] |
G.E. Boyd, A.W. Adamson, and L.S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites: Kinetics, J. Am. Chem. Soc., 69(1947), No. 11, p. 2836. doi: 10.1021/ja01203a066
|
[29] |
M.K. Aroua, S.P.P. Leong, L.Y. Teo, C.Y. Yin, and W.M.A.W. Wandaud, Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ion selective electrode, Bioresour. Technol., 99(2008), No. 13, p. 5786. doi: 10.1016/j.biortech.2007.10.010
|
[30] |
D.E. Egirani, N.R. Poyi, and N. Wessey, Synthesis of a copper(II) oxide–montmorillonite composite for lead removal, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 803. doi: 10.1007/s12613-019-1788-7
|
[31] |
E.Z. Li, H.B. Liang, Z.P. Du, D. Li, and F.Q. Cheng, Adsorption process of Octadecylamine Hydrochloride on KCl crystal surface in various salt saturated solutions: Kinetics, isotherm model and thermodynamics properties, J. Mol. Liq., 221(2016), p. 949. doi: 10.1016/j.molliq.2016.06.050
|
[32] |
Y.X. He, L.M. Zhang, X. An, G.P. Wan, W.J. Zhu, and Y.M. Luo, Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism, Sci. Total Environ., 688(2019), p. 184. doi: 10.1016/j.scitotenv.2019.06.175
|
[33] |
Y. Wimalasiri, M. Mossad, and L.D. Zou, Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization, Desalination, 357(2015), p. 178. doi: 10.1016/j.desal.2014.11.015
|
[34] |
X.C. Lu, J.C. Jiang, K. Sun, X.P. Xie, and Y.M. Hu, Surface modification, characterization and adsorptive properties of a coconut activated carbon, Appl. Surf. Sci., 258(2012), No. 20, p. 8247. doi: 10.1016/j.apsusc.2012.05.029
|
[35] |
W.L. Zhang, J. Yin, Z.Q. Lin, H.B. Lin, H.Y. Lu, Y. Wang, and W.M. Huang, Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance, Electrochim. Acta, 176(2015), p. 1136. doi: 10.1016/j.electacta.2015.08.001
|
[36] |
J.Y. Liu, S.P. Wang, J.M. Yang, J.J. Liao, M. Lu, H.J. Pan, and L. An, ZnCl2 activated electrospun carbon nanofiber for capacitive desalination, Desalination, 344(2014), p. 446. doi: 10.1016/j.desal.2014.04.015
|
[37] |
X. Liu, T. Chen, W.C. Qiao, Z. Wang, and L. Yu, Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization, J. Taiwan Inst. Chem. Eng., 72(2017), p. 213. doi: 10.1016/j.jtice.2017.01.013
|
[38] |
P.I. Liu, L.C. Chung, C.H. Ho, H. Shao, T.M. Liang, M.C. Chang, C.C.M. Ma, and R.Y. Horng, Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques, Desalination, 379(2016), p. 34. doi: 10.1016/j.desal.2015.10.008
|
[39] |
Y. Li, Q. Xie, W. Yan, Y. Wang, and Z.H. Zhang, Adsorption of K+ from an aqueous phase onto an activated carbon used as an electric double-layer capacitor electrode, Min. Sci. Technol. China, 20(2010), No. 4, p. 551. doi: 10.1016/S1674-5264(09)60242-8
|
[40] |
K. Navneet, K. Manpreet, and S. Dhanwinder, Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni(II) and Pb(II) ions: Adsorption, thermodynamic and kinetic studies, Environ. Pollut., 253(2019), p. 111. doi: 10.1016/j.envpol.2019.05.145
|
[41] |
C. Aharoni and F.C. Tompkins, Kinetics of adsorption and desorption and the Elovich equation, Adv. Catal., 21(1970), p. 1.
|
[42] |
Y.Y. Liu, Y. Xiong, P. Xu, Y. Pang, and C.Y. Du, Enhancement of Pb(II) adsorption by boron doped ordered mesoporous carbon: Isotherm and kinetics modeling, Sci. Total Environ., 708(2020), No. 15, art. No. 134918.
|
[43] |
N. Boukhalfa, M. Boutahala, N. Djebri, and A. Idris, Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized multiwalled carbon nanotubes composites, Int. J. Biol. Macromol., 123(2019), p. 539. doi: 10.1016/j.ijbiomac.2018.11.102
|
[44] |
Q. Tian, J.G. Yang, and X.J. Bai, Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 162. doi: 10.1007/s12613-019-1859-9
|
[45] |
Q.L. Hong, Y.H. Dong, W. Zuang, C. Rao, and C. Liu, Kinetics and thermodynamics of lysozyme adsorption on mesoporous titanium dioxide, Acta Phys. Chim. Sin., 32(2016), No. 3, p. 638. doi: 10.3866/PKU.WHXB201512181
|